
The number of solutions for the equation ${{\text{z}}^2} + |{\text{z| = 0}}$ is
$
{\text{A}}{\text{. 1}} \\
{\text{B}}{\text{. 2}} \\
{\text{C}}{\text{. 3}} \\
{\text{D}}{\text{. 4}} \\
$
Answer
514.8k+ views
Hint: We write the given complex number in terms of x and y and substitute in the equation. Comparing the real and imaginary components, we determine x and y. That gives us the values of z.
Step-by-step answer:
Here z is a complex number and it is of the form
z = x + iy --- (i = imaginary number, i = $\sqrt {\left( { - 1} \right)} $)
Now, ${{\text{z}}^2} = {\left( {{\text{x + iy}}} \right)^2}$
= ${{\text{x}}^2} + {\left( {{\text{iy}}} \right)^2} + {\text{2xiy}}$ -- (${{\text{i}}^2} = - 1$)
= ${{\text{x}}^2} - {{\text{y}}^2} + {\text{2xiy}}$
|z| = $\sqrt {{{\text{x}}^2} + {{\text{y}}^2}} $
Mod z, denoted by |z| is the absolute/scalar value of z and is given by the above.
Therefore, ${{\text{z}}^2} + |{\text{z| = 0}}$
$ \Rightarrow {{\text{x}}^2} - {{\text{y}}^2} + {\text{2xiy + }}\sqrt {{{\text{x}}^2} + {{\text{y}}^2}} = 0$
(0 can be written as 0 + i0)
$ \Rightarrow {{\text{x}}^2} - {{\text{y}}^2} + {\text{2xiy + }}\sqrt {{{\text{x}}^2} + {{\text{y}}^2}} = 0 + {\text{i0}}$
Comparing real components and imaginary components on both sides, we get
Real components: Imaginary components:
${{\text{x}}^2} - {{\text{y}}^2}{\text{ + }}\sqrt {{{\text{x}}^2} + {{\text{y}}^2}} = 0$ 2ixy = i0
⟹xy = 0
⟹x = 0 or y = 0
Case I:
When y = 0
Real part,
⟹${{\text{x}}^2}{\text{ + }}\sqrt {{{\text{x}}^2}} = 0$
⟹${{\text{x}}^2}{\text{ + |x|}} = 0$
⟹x = 0
If x = 0 and y = 0 ⟹ z = x + iy = 0
Case 2:
When x = 0
Real part,
⟹${\text{ - }}{{\text{y}}^2} + \sqrt {{{\text{y}}^2}} = 0$
⟹${\text{ - }}{{\text{y}}^2} + |{\text{y|}} = 0$
⟹|y| (|y| - 1) = 0
⟹y = 0, +1, -1
Here y cannot be 0 since that case already exists.
Hence, y = +1,-1
Thus we have, x = 0, y = +1 and x = 0, y = -1, therefore z = 0 + 1(i) = +i and z = 0 -1(i) = -i
The solutions of the equation ${{\text{z}}^2} + |{\text{z| = 0}}$ are 0, +i, -i.
Hence there are 3 solutions. Option C is the correct answer.
Note: The key in solving such types of problems is to write the complex number in terms of real number x terms and imaginary number y terms. Correctly comparing the real and imaginary components in the equation is a crucial step. We ignore the case y = 0 in step 2 as it is already covered in step 1.
And i =$\sqrt {\left( { - 1} \right)} $.
Step-by-step answer:
Here z is a complex number and it is of the form
z = x + iy --- (i = imaginary number, i = $\sqrt {\left( { - 1} \right)} $)
Now, ${{\text{z}}^2} = {\left( {{\text{x + iy}}} \right)^2}$
= ${{\text{x}}^2} + {\left( {{\text{iy}}} \right)^2} + {\text{2xiy}}$ -- (${{\text{i}}^2} = - 1$)
= ${{\text{x}}^2} - {{\text{y}}^2} + {\text{2xiy}}$
|z| = $\sqrt {{{\text{x}}^2} + {{\text{y}}^2}} $
Mod z, denoted by |z| is the absolute/scalar value of z and is given by the above.
Therefore, ${{\text{z}}^2} + |{\text{z| = 0}}$
$ \Rightarrow {{\text{x}}^2} - {{\text{y}}^2} + {\text{2xiy + }}\sqrt {{{\text{x}}^2} + {{\text{y}}^2}} = 0$
(0 can be written as 0 + i0)
$ \Rightarrow {{\text{x}}^2} - {{\text{y}}^2} + {\text{2xiy + }}\sqrt {{{\text{x}}^2} + {{\text{y}}^2}} = 0 + {\text{i0}}$
Comparing real components and imaginary components on both sides, we get
Real components: Imaginary components:
${{\text{x}}^2} - {{\text{y}}^2}{\text{ + }}\sqrt {{{\text{x}}^2} + {{\text{y}}^2}} = 0$ 2ixy = i0
⟹xy = 0
⟹x = 0 or y = 0
Case I:
When y = 0
Real part,
⟹${{\text{x}}^2}{\text{ + }}\sqrt {{{\text{x}}^2}} = 0$
⟹${{\text{x}}^2}{\text{ + |x|}} = 0$
⟹x = 0
If x = 0 and y = 0 ⟹ z = x + iy = 0
Case 2:
When x = 0
Real part,
⟹${\text{ - }}{{\text{y}}^2} + \sqrt {{{\text{y}}^2}} = 0$
⟹${\text{ - }}{{\text{y}}^2} + |{\text{y|}} = 0$
⟹|y| (|y| - 1) = 0
⟹y = 0, +1, -1
Here y cannot be 0 since that case already exists.
Hence, y = +1,-1
Thus we have, x = 0, y = +1 and x = 0, y = -1, therefore z = 0 + 1(i) = +i and z = 0 -1(i) = -i
The solutions of the equation ${{\text{z}}^2} + |{\text{z| = 0}}$ are 0, +i, -i.
Hence there are 3 solutions. Option C is the correct answer.
Note: The key in solving such types of problems is to write the complex number in terms of real number x terms and imaginary number y terms. Correctly comparing the real and imaginary components in the equation is a crucial step. We ignore the case y = 0 in step 2 as it is already covered in step 1.
And i =$\sqrt {\left( { - 1} \right)} $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
