
The number of reflexive relations of a set with four elements is equal to
(a) ${{2}^{16}}$
(b) ${{2}^{12}}$
(c) ${{2}^{8}}$
(d) ${{2}^{4}}$
Answer
522.1k+ views
Hint: By going through the definition of reflexive relations, we will first try to find the number of reflexive relations in a set of two elements. With the help of that, we will try to get the number of reflexive relations in a four-element set.
Complete step-by-step solution:
If there are $n$ elements in a set $X$ and a relation $R$ is defined from the set $X$ to $X$, then the relation $R$ is called a reflexive relation if every element of $X$ is related to itself. In other words, a relation R is reflexive if $\forall x\in X,\left( x,x \right)\in R$.
For an example, let us consider a set $X=\left\{ a,b,c \right\}$ and let us define two relations ${{R}_{1}}$ and ${{R}_{2}}$, then the relation ${{R}_{1}}=\left\{ \left( a,a \right),\left( b,b \right),\left( c,c \right),\left( a,c \right),\left( b,c \right) \right\}$ is reflexive, as $\forall x\in X,\left( x,x \right)\in {{R}_{1}}$. But the relation ${{R}_{2}}=\left\{ \left( a,a \right),\left( b,b \right),\left( a,c \right),\left( b,c \right) \right\}$ is not reflexive, as $\left( c,c \right)\notin {{R}_{2}}$ which violates the condition $\forall x\in X,\left( x,x \right)\in {{R}_{2}}$.
Let us consider a set $X=\left\{ 1,2 \right\}$ of two elements. Then the total number of relations on the set $X$ can be defined as:
$\begin{align}
& \varnothing ,\left\{ \left( 1,1 \right) \right\},\left\{ \left( 2,2 \right) \right\},\left\{ \left( 1,2 \right) \right\},\left\{ \left( 2,1 \right) \right\},\left\{ \left( 1,1 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,2 \right),\left( 1,2 \right) \right\}, \\
& \left\{ \left( 2,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,1 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 1,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\}, \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\} \\
\end{align}$
Out of these, the reflexive relations are:
$\begin{align}
& \left\{ \left( 1,1 \right),\left( 2,2 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 2,1 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\} \\
\end{align}$
Thus, out of the total $16={{2}^{{{2}^{2}}}}$ relations, only $4={{2}^{\left( {{2}^{2}}-2 \right)}}$ are reflexive.
Similarly, we can find that for a four-element set, the total number of relations is ${{2}^{{{4}^{2}}}}$ and out of these ${{2}^{{{4}^{2}}-4}}={{2}^{12}}$ relations are reflexive.
Hence, option (b) is correct.
Note: For a set of $n$ elements, we can generalize the formula as
Total number of relations $={{2}^{{{n}^{2}}}}$
Total number of reflexive relations $={{2}^{{{n}^{2}}-n}}={{2}^{n\left( n-1 \right)}}$
Thus, this can be used as a short-cut trick for solving these types of questions.
Complete step-by-step solution:
If there are $n$ elements in a set $X$ and a relation $R$ is defined from the set $X$ to $X$, then the relation $R$ is called a reflexive relation if every element of $X$ is related to itself. In other words, a relation R is reflexive if $\forall x\in X,\left( x,x \right)\in R$.
For an example, let us consider a set $X=\left\{ a,b,c \right\}$ and let us define two relations ${{R}_{1}}$ and ${{R}_{2}}$, then the relation ${{R}_{1}}=\left\{ \left( a,a \right),\left( b,b \right),\left( c,c \right),\left( a,c \right),\left( b,c \right) \right\}$ is reflexive, as $\forall x\in X,\left( x,x \right)\in {{R}_{1}}$. But the relation ${{R}_{2}}=\left\{ \left( a,a \right),\left( b,b \right),\left( a,c \right),\left( b,c \right) \right\}$ is not reflexive, as $\left( c,c \right)\notin {{R}_{2}}$ which violates the condition $\forall x\in X,\left( x,x \right)\in {{R}_{2}}$.
Let us consider a set $X=\left\{ 1,2 \right\}$ of two elements. Then the total number of relations on the set $X$ can be defined as:
$\begin{align}
& \varnothing ,\left\{ \left( 1,1 \right) \right\},\left\{ \left( 2,2 \right) \right\},\left\{ \left( 1,2 \right) \right\},\left\{ \left( 2,1 \right) \right\},\left\{ \left( 1,1 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,2 \right),\left( 1,2 \right) \right\}, \\
& \left\{ \left( 2,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,1 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 1,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\}, \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\} \\
\end{align}$
Out of these, the reflexive relations are:
$\begin{align}
& \left\{ \left( 1,1 \right),\left( 2,2 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 2,1 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\} \\
\end{align}$
Thus, out of the total $16={{2}^{{{2}^{2}}}}$ relations, only $4={{2}^{\left( {{2}^{2}}-2 \right)}}$ are reflexive.
Similarly, we can find that for a four-element set, the total number of relations is ${{2}^{{{4}^{2}}}}$ and out of these ${{2}^{{{4}^{2}}-4}}={{2}^{12}}$ relations are reflexive.
Hence, option (b) is correct.
Note: For a set of $n$ elements, we can generalize the formula as
Total number of relations $={{2}^{{{n}^{2}}}}$
Total number of reflexive relations $={{2}^{{{n}^{2}}-n}}={{2}^{n\left( n-1 \right)}}$
Thus, this can be used as a short-cut trick for solving these types of questions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

