
The number of reflexive relations of a set with four elements is equal to
(a) ${{2}^{16}}$
(b) ${{2}^{12}}$
(c) ${{2}^{8}}$
(d) ${{2}^{4}}$
Answer
507.7k+ views
Hint: By going through the definition of reflexive relations, we will first try to find the number of reflexive relations in a set of two elements. With the help of that, we will try to get the number of reflexive relations in a four-element set.
Complete step-by-step solution:
If there are $n$ elements in a set $X$ and a relation $R$ is defined from the set $X$ to $X$, then the relation $R$ is called a reflexive relation if every element of $X$ is related to itself. In other words, a relation R is reflexive if $\forall x\in X,\left( x,x \right)\in R$.
For an example, let us consider a set $X=\left\{ a,b,c \right\}$ and let us define two relations ${{R}_{1}}$ and ${{R}_{2}}$, then the relation ${{R}_{1}}=\left\{ \left( a,a \right),\left( b,b \right),\left( c,c \right),\left( a,c \right),\left( b,c \right) \right\}$ is reflexive, as $\forall x\in X,\left( x,x \right)\in {{R}_{1}}$. But the relation ${{R}_{2}}=\left\{ \left( a,a \right),\left( b,b \right),\left( a,c \right),\left( b,c \right) \right\}$ is not reflexive, as $\left( c,c \right)\notin {{R}_{2}}$ which violates the condition $\forall x\in X,\left( x,x \right)\in {{R}_{2}}$.
Let us consider a set $X=\left\{ 1,2 \right\}$ of two elements. Then the total number of relations on the set $X$ can be defined as:
$\begin{align}
& \varnothing ,\left\{ \left( 1,1 \right) \right\},\left\{ \left( 2,2 \right) \right\},\left\{ \left( 1,2 \right) \right\},\left\{ \left( 2,1 \right) \right\},\left\{ \left( 1,1 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,2 \right),\left( 1,2 \right) \right\}, \\
& \left\{ \left( 2,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,1 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 1,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\}, \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\} \\
\end{align}$
Out of these, the reflexive relations are:
$\begin{align}
& \left\{ \left( 1,1 \right),\left( 2,2 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 2,1 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\} \\
\end{align}$
Thus, out of the total $16={{2}^{{{2}^{2}}}}$ relations, only $4={{2}^{\left( {{2}^{2}}-2 \right)}}$ are reflexive.
Similarly, we can find that for a four-element set, the total number of relations is ${{2}^{{{4}^{2}}}}$ and out of these ${{2}^{{{4}^{2}}-4}}={{2}^{12}}$ relations are reflexive.
Hence, option (b) is correct.
Note: For a set of $n$ elements, we can generalize the formula as
Total number of relations $={{2}^{{{n}^{2}}}}$
Total number of reflexive relations $={{2}^{{{n}^{2}}-n}}={{2}^{n\left( n-1 \right)}}$
Thus, this can be used as a short-cut trick for solving these types of questions.
Complete step-by-step solution:
If there are $n$ elements in a set $X$ and a relation $R$ is defined from the set $X$ to $X$, then the relation $R$ is called a reflexive relation if every element of $X$ is related to itself. In other words, a relation R is reflexive if $\forall x\in X,\left( x,x \right)\in R$.
For an example, let us consider a set $X=\left\{ a,b,c \right\}$ and let us define two relations ${{R}_{1}}$ and ${{R}_{2}}$, then the relation ${{R}_{1}}=\left\{ \left( a,a \right),\left( b,b \right),\left( c,c \right),\left( a,c \right),\left( b,c \right) \right\}$ is reflexive, as $\forall x\in X,\left( x,x \right)\in {{R}_{1}}$. But the relation ${{R}_{2}}=\left\{ \left( a,a \right),\left( b,b \right),\left( a,c \right),\left( b,c \right) \right\}$ is not reflexive, as $\left( c,c \right)\notin {{R}_{2}}$ which violates the condition $\forall x\in X,\left( x,x \right)\in {{R}_{2}}$.
Let us consider a set $X=\left\{ 1,2 \right\}$ of two elements. Then the total number of relations on the set $X$ can be defined as:
$\begin{align}
& \varnothing ,\left\{ \left( 1,1 \right) \right\},\left\{ \left( 2,2 \right) \right\},\left\{ \left( 1,2 \right) \right\},\left\{ \left( 2,1 \right) \right\},\left\{ \left( 1,1 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,2 \right),\left( 1,2 \right) \right\}, \\
& \left\{ \left( 2,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,1 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 1,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\}, \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\} \\
\end{align}$
Out of these, the reflexive relations are:
$\begin{align}
& \left\{ \left( 1,1 \right),\left( 2,2 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 2,1 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\} \\
\end{align}$
Thus, out of the total $16={{2}^{{{2}^{2}}}}$ relations, only $4={{2}^{\left( {{2}^{2}}-2 \right)}}$ are reflexive.
Similarly, we can find that for a four-element set, the total number of relations is ${{2}^{{{4}^{2}}}}$ and out of these ${{2}^{{{4}^{2}}-4}}={{2}^{12}}$ relations are reflexive.
Hence, option (b) is correct.
Note: For a set of $n$ elements, we can generalize the formula as
Total number of relations $={{2}^{{{n}^{2}}}}$
Total number of reflexive relations $={{2}^{{{n}^{2}}-n}}={{2}^{n\left( n-1 \right)}}$
Thus, this can be used as a short-cut trick for solving these types of questions.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

