
The number of reflexive relations of a set with four elements is equal to
(a) ${{2}^{16}}$
(b) ${{2}^{12}}$
(c) ${{2}^{8}}$
(d) ${{2}^{4}}$
Answer
507.7k+ views
Hint: By going through the definition of reflexive relations, we will first try to find the number of reflexive relations in a set of two elements. With the help of that, we will try to get the number of reflexive relations in a four-element set.
Complete step-by-step solution:
If there are $n$ elements in a set $X$ and a relation $R$ is defined from the set $X$ to $X$, then the relation $R$ is called a reflexive relation if every element of $X$ is related to itself. In other words, a relation R is reflexive if $\forall x\in X,\left( x,x \right)\in R$.
For an example, let us consider a set $X=\left\{ a,b,c \right\}$ and let us define two relations ${{R}_{1}}$ and ${{R}_{2}}$, then the relation ${{R}_{1}}=\left\{ \left( a,a \right),\left( b,b \right),\left( c,c \right),\left( a,c \right),\left( b,c \right) \right\}$ is reflexive, as $\forall x\in X,\left( x,x \right)\in {{R}_{1}}$. But the relation ${{R}_{2}}=\left\{ \left( a,a \right),\left( b,b \right),\left( a,c \right),\left( b,c \right) \right\}$ is not reflexive, as $\left( c,c \right)\notin {{R}_{2}}$ which violates the condition $\forall x\in X,\left( x,x \right)\in {{R}_{2}}$.
Let us consider a set $X=\left\{ 1,2 \right\}$ of two elements. Then the total number of relations on the set $X$ can be defined as:
$\begin{align}
& \varnothing ,\left\{ \left( 1,1 \right) \right\},\left\{ \left( 2,2 \right) \right\},\left\{ \left( 1,2 \right) \right\},\left\{ \left( 2,1 \right) \right\},\left\{ \left( 1,1 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,2 \right),\left( 1,2 \right) \right\}, \\
& \left\{ \left( 2,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,1 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 1,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\}, \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\} \\
\end{align}$
Out of these, the reflexive relations are:
$\begin{align}
& \left\{ \left( 1,1 \right),\left( 2,2 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 2,1 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\} \\
\end{align}$
Thus, out of the total $16={{2}^{{{2}^{2}}}}$ relations, only $4={{2}^{\left( {{2}^{2}}-2 \right)}}$ are reflexive.
Similarly, we can find that for a four-element set, the total number of relations is ${{2}^{{{4}^{2}}}}$ and out of these ${{2}^{{{4}^{2}}-4}}={{2}^{12}}$ relations are reflexive.
Hence, option (b) is correct.
Note: For a set of $n$ elements, we can generalize the formula as
Total number of relations $={{2}^{{{n}^{2}}}}$
Total number of reflexive relations $={{2}^{{{n}^{2}}-n}}={{2}^{n\left( n-1 \right)}}$
Thus, this can be used as a short-cut trick for solving these types of questions.
Complete step-by-step solution:
If there are $n$ elements in a set $X$ and a relation $R$ is defined from the set $X$ to $X$, then the relation $R$ is called a reflexive relation if every element of $X$ is related to itself. In other words, a relation R is reflexive if $\forall x\in X,\left( x,x \right)\in R$.
For an example, let us consider a set $X=\left\{ a,b,c \right\}$ and let us define two relations ${{R}_{1}}$ and ${{R}_{2}}$, then the relation ${{R}_{1}}=\left\{ \left( a,a \right),\left( b,b \right),\left( c,c \right),\left( a,c \right),\left( b,c \right) \right\}$ is reflexive, as $\forall x\in X,\left( x,x \right)\in {{R}_{1}}$. But the relation ${{R}_{2}}=\left\{ \left( a,a \right),\left( b,b \right),\left( a,c \right),\left( b,c \right) \right\}$ is not reflexive, as $\left( c,c \right)\notin {{R}_{2}}$ which violates the condition $\forall x\in X,\left( x,x \right)\in {{R}_{2}}$.
Let us consider a set $X=\left\{ 1,2 \right\}$ of two elements. Then the total number of relations on the set $X$ can be defined as:
$\begin{align}
& \varnothing ,\left\{ \left( 1,1 \right) \right\},\left\{ \left( 2,2 \right) \right\},\left\{ \left( 1,2 \right) \right\},\left\{ \left( 2,1 \right) \right\},\left\{ \left( 1,1 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,2 \right),\left( 1,2 \right) \right\}, \\
& \left\{ \left( 2,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,1 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 1,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\}, \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 2,1 \right) \right\},\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\} \\
\end{align}$
Out of these, the reflexive relations are:
$\begin{align}
& \left\{ \left( 1,1 \right),\left( 2,2 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 2,1 \right) \right\} \\
& \left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\} \\
\end{align}$
Thus, out of the total $16={{2}^{{{2}^{2}}}}$ relations, only $4={{2}^{\left( {{2}^{2}}-2 \right)}}$ are reflexive.
Similarly, we can find that for a four-element set, the total number of relations is ${{2}^{{{4}^{2}}}}$ and out of these ${{2}^{{{4}^{2}}-4}}={{2}^{12}}$ relations are reflexive.
Hence, option (b) is correct.
Note: For a set of $n$ elements, we can generalize the formula as
Total number of relations $={{2}^{{{n}^{2}}}}$
Total number of reflexive relations $={{2}^{{{n}^{2}}-n}}={{2}^{n\left( n-1 \right)}}$
Thus, this can be used as a short-cut trick for solving these types of questions.
Recently Updated Pages
Name a phenomenon or an experiment which proves i Particle class 12 physics CBSE

A drop of water behaves like a lens class 12 physics CBSE

Genetic engineering has been successful used for producing class 12 biology CBSE

The maximum efficiency of full wave rectifier is A100 class 12 physics CBSE

Give an example of an exalbuminous seed class 12 biology CBSE

Interference pattern is observed at P due to superposition class 12 physics CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

