Answer
Verified
475.2k+ views
Hint – To find the number of non-trivial solutions of given equations we write the set of equations in matrix form. Then find its determinant and equate it to 0.
Complete step-by-step answer:
For a non-trivial solution the determinant of the respective matrix = 0
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{\text{t}}&{{\text{t + 1}}}&{{\text{t - 1}}} \\
{{\text{t + 1}}}&{\text{t}}&{{\text{t + 2}}} \\
{{\text{t - 1}}}&{{\text{t + 2}}}&{\text{t}}
\end{array}} \right)$ = 0
Now, we reduce the matrix using row operations
R2 -> R2 – R1
R3 -> R3 – R1
Which gives us,
\[\left( {\begin{array}{*{20}{c}}
{\text{t}}&{{\text{t + 1}}}&{{\text{t - 1}}} \\
{\text{1}}&{ - 1}&3 \\
{ - 1}&1&1
\end{array}} \right) = 0\]
For $
{\text{A = }}\left( {\begin{array}{*{20}{c}}
{\text{a}}&{\text{b}}&{\text{c}} \\
{\text{d}}&{\text{e}}&{\text{f}} \\
{\text{g}}&{\text{h}}&{\text{i}}
\end{array}} \right) \\
\\
$, Det A = a (ei - fh) - b (di - fg) + c (dh - eg)
⟹t (-1 x 1 – 3 x 1) – (t + 1) (1 x 1 – (3 x -1)) + (t -1) (1 x 1 – (-1 x -1)) = 0
⟹t (-1 -3) – (t + 1)(1 +3) + (t – 1)(1 – 1) = 0
⟹-4t -4t -4 = 0
⟹-8t – 4 = 0
⟹t =$ - \dfrac{1}{2}$.
‘t’ has only one value for which the system has non- homogeneous equations and has non- trivial solutions. Hence Option C is the correct answer.
Note: The key point to solve such problems is to know that for a non-trivial solution the determinant of the matrix is zero.
A (n x n) homogeneous system of linear equations has a unique solution (the trivial solution) if and only if its determinant is non-zero. If this determinant is zero, then the system has an infinite number of solutions.
Complete step-by-step answer:
For a non-trivial solution the determinant of the respective matrix = 0
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{\text{t}}&{{\text{t + 1}}}&{{\text{t - 1}}} \\
{{\text{t + 1}}}&{\text{t}}&{{\text{t + 2}}} \\
{{\text{t - 1}}}&{{\text{t + 2}}}&{\text{t}}
\end{array}} \right)$ = 0
Now, we reduce the matrix using row operations
R2 -> R2 – R1
R3 -> R3 – R1
Which gives us,
\[\left( {\begin{array}{*{20}{c}}
{\text{t}}&{{\text{t + 1}}}&{{\text{t - 1}}} \\
{\text{1}}&{ - 1}&3 \\
{ - 1}&1&1
\end{array}} \right) = 0\]
For $
{\text{A = }}\left( {\begin{array}{*{20}{c}}
{\text{a}}&{\text{b}}&{\text{c}} \\
{\text{d}}&{\text{e}}&{\text{f}} \\
{\text{g}}&{\text{h}}&{\text{i}}
\end{array}} \right) \\
\\
$, Det A = a (ei - fh) - b (di - fg) + c (dh - eg)
⟹t (-1 x 1 – 3 x 1) – (t + 1) (1 x 1 – (3 x -1)) + (t -1) (1 x 1 – (-1 x -1)) = 0
⟹t (-1 -3) – (t + 1)(1 +3) + (t – 1)(1 – 1) = 0
⟹-4t -4t -4 = 0
⟹-8t – 4 = 0
⟹t =$ - \dfrac{1}{2}$.
‘t’ has only one value for which the system has non- homogeneous equations and has non- trivial solutions. Hence Option C is the correct answer.
Note: The key point to solve such problems is to know that for a non-trivial solution the determinant of the matrix is zero.
A (n x n) homogeneous system of linear equations has a unique solution (the trivial solution) if and only if its determinant is non-zero. If this determinant is zero, then the system has an infinite number of solutions.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths