The number of real values of t such that the system of homogeneous equation
tx + (t + 1) y + (t – 1) z = 0
(t + 1) x + ty + (t + 2) z = 0
(t – 1) x + (t + 2) y + tz = 0
Has non – trivial solutions, is
$
{\text{A}}{\text{. 3}} \\
{\text{B}}{\text{. 2}} \\
{\text{C}}{\text{. 1}} \\
{\text{D}}{\text{. 4}} \\
$
Answer
326.1k+ views
Hint – To find the number of non-trivial solutions of given equations we write the set of equations in matrix form. Then find its determinant and equate it to 0.
Complete step-by-step answer:
For a non-trivial solution the determinant of the respective matrix = 0
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{\text{t}}&{{\text{t + 1}}}&{{\text{t - 1}}} \\
{{\text{t + 1}}}&{\text{t}}&{{\text{t + 2}}} \\
{{\text{t - 1}}}&{{\text{t + 2}}}&{\text{t}}
\end{array}} \right)$ = 0
Now, we reduce the matrix using row operations
R2 -> R2 – R1
R3 -> R3 – R1
Which gives us,
\[\left( {\begin{array}{*{20}{c}}
{\text{t}}&{{\text{t + 1}}}&{{\text{t - 1}}} \\
{\text{1}}&{ - 1}&3 \\
{ - 1}&1&1
\end{array}} \right) = 0\]
For $
{\text{A = }}\left( {\begin{array}{*{20}{c}}
{\text{a}}&{\text{b}}&{\text{c}} \\
{\text{d}}&{\text{e}}&{\text{f}} \\
{\text{g}}&{\text{h}}&{\text{i}}
\end{array}} \right) \\
\\
$, Det A = a (ei - fh) - b (di - fg) + c (dh - eg)
⟹t (-1 x 1 – 3 x 1) – (t + 1) (1 x 1 – (3 x -1)) + (t -1) (1 x 1 – (-1 x -1)) = 0
⟹t (-1 -3) – (t + 1)(1 +3) + (t – 1)(1 – 1) = 0
⟹-4t -4t -4 = 0
⟹-8t – 4 = 0
⟹t =$ - \dfrac{1}{2}$.
‘t’ has only one value for which the system has non- homogeneous equations and has non- trivial solutions. Hence Option C is the correct answer.
Note: The key point to solve such problems is to know that for a non-trivial solution the determinant of the matrix is zero.
A (n x n) homogeneous system of linear equations has a unique solution (the trivial solution) if and only if its determinant is non-zero. If this determinant is zero, then the system has an infinite number of solutions.
Complete step-by-step answer:
For a non-trivial solution the determinant of the respective matrix = 0
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{\text{t}}&{{\text{t + 1}}}&{{\text{t - 1}}} \\
{{\text{t + 1}}}&{\text{t}}&{{\text{t + 2}}} \\
{{\text{t - 1}}}&{{\text{t + 2}}}&{\text{t}}
\end{array}} \right)$ = 0
Now, we reduce the matrix using row operations
R2 -> R2 – R1
R3 -> R3 – R1
Which gives us,
\[\left( {\begin{array}{*{20}{c}}
{\text{t}}&{{\text{t + 1}}}&{{\text{t - 1}}} \\
{\text{1}}&{ - 1}&3 \\
{ - 1}&1&1
\end{array}} \right) = 0\]
For $
{\text{A = }}\left( {\begin{array}{*{20}{c}}
{\text{a}}&{\text{b}}&{\text{c}} \\
{\text{d}}&{\text{e}}&{\text{f}} \\
{\text{g}}&{\text{h}}&{\text{i}}
\end{array}} \right) \\
\\
$, Det A = a (ei - fh) - b (di - fg) + c (dh - eg)
⟹t (-1 x 1 – 3 x 1) – (t + 1) (1 x 1 – (3 x -1)) + (t -1) (1 x 1 – (-1 x -1)) = 0
⟹t (-1 -3) – (t + 1)(1 +3) + (t – 1)(1 – 1) = 0
⟹-4t -4t -4 = 0
⟹-8t – 4 = 0
⟹t =$ - \dfrac{1}{2}$.
‘t’ has only one value for which the system has non- homogeneous equations and has non- trivial solutions. Hence Option C is the correct answer.
Note: The key point to solve such problems is to know that for a non-trivial solution the determinant of the matrix is zero.
A (n x n) homogeneous system of linear equations has a unique solution (the trivial solution) if and only if its determinant is non-zero. If this determinant is zero, then the system has an infinite number of solutions.
Last updated date: 01st Jun 2023
•
Total views: 326.1k
•
Views today: 6.83k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
