
The number of positive integral solutions ${x^2} + 9 < {\left( {x + 3} \right)^2} < 8x + 25$ ,is
$
A.{\text{ 2}} \\
{\text{B}}{\text{. 3}} \\
{\text{C}}{\text{. 4}} \\
{\text{D}}{\text{. 5}} \\
$
Answer
593.4k+ views
Hint: In order to solve this question, we will solve the inequalities separately taking one term as constant in order to find out the number of positive integrals.
Complete step-by-step answer:
Given,
${x^2} + 9 < {\left( {x + 3} \right)^2} < 8x + 25$
Taking inequality number (1)
${x^2} + 9 < {\left( {x + 3} \right)^2}$
Or ${x^2} + 9 < {x^2} + 6x + 9$
Or ${x^2} + 9 - {x^2} - 6x - 9 < 0$
Or $ - 6x < 0$
Or $6x > 0$
Or $x > 0 - - - - - - \left( 1 \right)$
Taking inequality number (2)
Or ${x^2} + 6x + 9 < 8x + 25$
Or ${x^2} - 2x - 16 < 0$
Using ,$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where $a = 1,{\text{ }}b = - 2,{\text{ c = - 16}}$
$x = \dfrac{{ - \left( { - 2} \right) \pm \sqrt {{2^2} - 4\left( 1 \right)} \left( { - 16} \right)}}{{2\left( 1 \right)}}$
Or $x = \dfrac{{2 \pm \sqrt {4 + 64} }}{2}$
Or $x = \dfrac{2}{2}\left( {1 \pm \sqrt {17} } \right)$
Or $x = 1 \pm \sqrt {17} $
Or $1 - \sqrt {17} < x < 1 + \sqrt {17} $
But it must be a positive integral.
Therefore,
$0 < x < 1 + \sqrt {17} $
So the integer values in our domain are
$1,2,3,4,5$
So, the option $\left( D \right)$ is correct.
Note: Whenever we face these types of questions the key concept is that we have to take the inequalities separately and only the positive values of $x$ is considerable as the number of integrals and in this way we will get our desired answer. Here, in this we did the same thing and thus we got our desired answer.
Complete step-by-step answer:
Given,
${x^2} + 9 < {\left( {x + 3} \right)^2} < 8x + 25$
Taking inequality number (1)
${x^2} + 9 < {\left( {x + 3} \right)^2}$
Or ${x^2} + 9 < {x^2} + 6x + 9$
Or ${x^2} + 9 - {x^2} - 6x - 9 < 0$
Or $ - 6x < 0$
Or $6x > 0$
Or $x > 0 - - - - - - \left( 1 \right)$
Taking inequality number (2)
Or ${x^2} + 6x + 9 < 8x + 25$
Or ${x^2} - 2x - 16 < 0$
Using ,$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where $a = 1,{\text{ }}b = - 2,{\text{ c = - 16}}$
$x = \dfrac{{ - \left( { - 2} \right) \pm \sqrt {{2^2} - 4\left( 1 \right)} \left( { - 16} \right)}}{{2\left( 1 \right)}}$
Or $x = \dfrac{{2 \pm \sqrt {4 + 64} }}{2}$
Or $x = \dfrac{2}{2}\left( {1 \pm \sqrt {17} } \right)$
Or $x = 1 \pm \sqrt {17} $
Or $1 - \sqrt {17} < x < 1 + \sqrt {17} $
But it must be a positive integral.
Therefore,
$0 < x < 1 + \sqrt {17} $
So the integer values in our domain are
$1,2,3,4,5$
So, the option $\left( D \right)$ is correct.
Note: Whenever we face these types of questions the key concept is that we have to take the inequalities separately and only the positive values of $x$ is considerable as the number of integrals and in this way we will get our desired answer. Here, in this we did the same thing and thus we got our desired answer.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

