The number of positive integral solutions ${x^2} + 9 < {\left( {x + 3} \right)^2} < 8x + 25$ ,is
$
A.{\text{ 2}} \\
{\text{B}}{\text{. 3}} \\
{\text{C}}{\text{. 4}} \\
{\text{D}}{\text{. 5}} \\
$
Last updated date: 30th Mar 2023
•
Total views: 307.8k
•
Views today: 7.85k
Answer
307.8k+ views
Hint: In order to solve this question, we will solve the inequalities separately taking one term as constant in order to find out the number of positive integrals.
Complete step-by-step answer:
Given,
${x^2} + 9 < {\left( {x + 3} \right)^2} < 8x + 25$
Taking inequality number (1)
${x^2} + 9 < {\left( {x + 3} \right)^2}$
Or ${x^2} + 9 < {x^2} + 6x + 9$
Or ${x^2} + 9 - {x^2} - 6x - 9 < 0$
Or $ - 6x < 0$
Or $6x > 0$
Or $x > 0 - - - - - - \left( 1 \right)$
Taking inequality number (2)
Or ${x^2} + 6x + 9 < 8x + 25$
Or ${x^2} - 2x - 16 < 0$
Using ,$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where $a = 1,{\text{ }}b = - 2,{\text{ c = - 16}}$
$x = \dfrac{{ - \left( { - 2} \right) \pm \sqrt {{2^2} - 4\left( 1 \right)} \left( { - 16} \right)}}{{2\left( 1 \right)}}$
Or $x = \dfrac{{2 \pm \sqrt {4 + 64} }}{2}$
Or $x = \dfrac{2}{2}\left( {1 \pm \sqrt {17} } \right)$
Or $x = 1 \pm \sqrt {17} $
Or $1 - \sqrt {17} < x < 1 + \sqrt {17} $
But it must be a positive integral.
Therefore,
$0 < x < 1 + \sqrt {17} $
So the integer values in our domain are
$1,2,3,4,5$
So, the option $\left( D \right)$ is correct.
Note: Whenever we face these types of questions the key concept is that we have to take the inequalities separately and only the positive values of $x$ is considerable as the number of integrals and in this way we will get our desired answer. Here, in this we did the same thing and thus we got our desired answer.
Complete step-by-step answer:
Given,
${x^2} + 9 < {\left( {x + 3} \right)^2} < 8x + 25$
Taking inequality number (1)
${x^2} + 9 < {\left( {x + 3} \right)^2}$
Or ${x^2} + 9 < {x^2} + 6x + 9$
Or ${x^2} + 9 - {x^2} - 6x - 9 < 0$
Or $ - 6x < 0$
Or $6x > 0$
Or $x > 0 - - - - - - \left( 1 \right)$
Taking inequality number (2)
Or ${x^2} + 6x + 9 < 8x + 25$
Or ${x^2} - 2x - 16 < 0$
Using ,$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where $a = 1,{\text{ }}b = - 2,{\text{ c = - 16}}$
$x = \dfrac{{ - \left( { - 2} \right) \pm \sqrt {{2^2} - 4\left( 1 \right)} \left( { - 16} \right)}}{{2\left( 1 \right)}}$
Or $x = \dfrac{{2 \pm \sqrt {4 + 64} }}{2}$
Or $x = \dfrac{2}{2}\left( {1 \pm \sqrt {17} } \right)$
Or $x = 1 \pm \sqrt {17} $
Or $1 - \sqrt {17} < x < 1 + \sqrt {17} $
But it must be a positive integral.
Therefore,
$0 < x < 1 + \sqrt {17} $
So the integer values in our domain are
$1,2,3,4,5$
So, the option $\left( D \right)$ is correct.
Note: Whenever we face these types of questions the key concept is that we have to take the inequalities separately and only the positive values of $x$ is considerable as the number of integrals and in this way we will get our desired answer. Here, in this we did the same thing and thus we got our desired answer.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
