Answer
Verified
493.5k+ views
Hint: In order to solve this question, we will solve the inequalities separately taking one term as constant in order to find out the number of positive integrals.
Complete step-by-step answer:
Given,
${x^2} + 9 < {\left( {x + 3} \right)^2} < 8x + 25$
Taking inequality number (1)
${x^2} + 9 < {\left( {x + 3} \right)^2}$
Or ${x^2} + 9 < {x^2} + 6x + 9$
Or ${x^2} + 9 - {x^2} - 6x - 9 < 0$
Or $ - 6x < 0$
Or $6x > 0$
Or $x > 0 - - - - - - \left( 1 \right)$
Taking inequality number (2)
Or ${x^2} + 6x + 9 < 8x + 25$
Or ${x^2} - 2x - 16 < 0$
Using ,$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where $a = 1,{\text{ }}b = - 2,{\text{ c = - 16}}$
$x = \dfrac{{ - \left( { - 2} \right) \pm \sqrt {{2^2} - 4\left( 1 \right)} \left( { - 16} \right)}}{{2\left( 1 \right)}}$
Or $x = \dfrac{{2 \pm \sqrt {4 + 64} }}{2}$
Or $x = \dfrac{2}{2}\left( {1 \pm \sqrt {17} } \right)$
Or $x = 1 \pm \sqrt {17} $
Or $1 - \sqrt {17} < x < 1 + \sqrt {17} $
But it must be a positive integral.
Therefore,
$0 < x < 1 + \sqrt {17} $
So the integer values in our domain are
$1,2,3,4,5$
So, the option $\left( D \right)$ is correct.
Note: Whenever we face these types of questions the key concept is that we have to take the inequalities separately and only the positive values of $x$ is considerable as the number of integrals and in this way we will get our desired answer. Here, in this we did the same thing and thus we got our desired answer.
Complete step-by-step answer:
Given,
${x^2} + 9 < {\left( {x + 3} \right)^2} < 8x + 25$
Taking inequality number (1)
${x^2} + 9 < {\left( {x + 3} \right)^2}$
Or ${x^2} + 9 < {x^2} + 6x + 9$
Or ${x^2} + 9 - {x^2} - 6x - 9 < 0$
Or $ - 6x < 0$
Or $6x > 0$
Or $x > 0 - - - - - - \left( 1 \right)$
Taking inequality number (2)
Or ${x^2} + 6x + 9 < 8x + 25$
Or ${x^2} - 2x - 16 < 0$
Using ,$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where $a = 1,{\text{ }}b = - 2,{\text{ c = - 16}}$
$x = \dfrac{{ - \left( { - 2} \right) \pm \sqrt {{2^2} - 4\left( 1 \right)} \left( { - 16} \right)}}{{2\left( 1 \right)}}$
Or $x = \dfrac{{2 \pm \sqrt {4 + 64} }}{2}$
Or $x = \dfrac{2}{2}\left( {1 \pm \sqrt {17} } \right)$
Or $x = 1 \pm \sqrt {17} $
Or $1 - \sqrt {17} < x < 1 + \sqrt {17} $
But it must be a positive integral.
Therefore,
$0 < x < 1 + \sqrt {17} $
So the integer values in our domain are
$1,2,3,4,5$
So, the option $\left( D \right)$ is correct.
Note: Whenever we face these types of questions the key concept is that we have to take the inequalities separately and only the positive values of $x$ is considerable as the number of integrals and in this way we will get our desired answer. Here, in this we did the same thing and thus we got our desired answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE