
The number of permutation of $n$ different objects taken $r$ at a time, when repetition of objects in the permutation is allowed is ${{n}^{r}}$
Answer
489.9k+ views
Hint: To prove the theorem we use permutation concept. Firstly we will take the number of possibilities for each object which is taken $r$ at a time when the repetition of objects is allowed. Then we will combine all the possibilities and get the desired answer.
Complete step-by-step solution:
We have that number of possibility for each object is:
$n$
Then we know we are taking different object for the given time:
$r$
We can show the above condition using diagram as follows:
Complete step-by-step solution:
We have that number of possibility for each object is:
$n$
Then we know we are taking different object for the given time:
$r$
We can show the above condition using diagram as follows:
So we get total permutation as,
$n\times n\times n\times n\times n......r$ Times
So we can write above value as:
${{n}^{r}}$
For example- How many three letter word can be formed by with or without meaning using the word $KIDNEY$ when repetition is allowed
So the word $KIDNEY$ has 6 words in it and we have to form 3-letter words.
So we have
$n=6$
$r=3$
Thus the permutation will be as follows:
$P$(3 letters word) $={{6}^{3}}$
$P$(3 letters word) $=216$
Hence the number of permutation of $n$ different objects taken $r$ at a time, when repetition of objects in the permutation is allowed is ${{n}^{r}}$
Note: Permutation of a set is an arrangement of its members into a sequence or linear order. Permutations are of three types: firstly we have permutation of $n$ different objects when repetition is not allowed then we have Permutation when repetition is allowed and lastly we have Permutation when the objects are not distinct or we can say Permutation of multi sets.
$n\times n\times n\times n\times n......r$ Times
So we can write above value as:
${{n}^{r}}$
For example- How many three letter word can be formed by with or without meaning using the word $KIDNEY$ when repetition is allowed
So the word $KIDNEY$ has 6 words in it and we have to form 3-letter words.
So we have
$n=6$
$r=3$
Thus the permutation will be as follows:
$P$(3 letters word) $={{6}^{3}}$
$P$(3 letters word) $=216$
Hence the number of permutation of $n$ different objects taken $r$ at a time, when repetition of objects in the permutation is allowed is ${{n}^{r}}$
Note: Permutation of a set is an arrangement of its members into a sequence or linear order. Permutations are of three types: firstly we have permutation of $n$ different objects when repetition is not allowed then we have Permutation when repetition is allowed and lastly we have Permutation when the objects are not distinct or we can say Permutation of multi sets.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

