
The number of particles crossing a unit area perpendicular to x-axis in a unit time is given by $n=-D\dfrac{{{n}_{2}}-{{n}_{1}}}{{{x}_{2}}-{{x}_{1}}}$, where ${{n}_{1}}$ and ${{n}_{2}}$ are the number of particles per unit volume at $x={{x}_{1}}$ and $x={{x}_{2}}$ respectively and D is diffusion constant. The dimensions of D are
Answer
518.1k+ views
Hint: In the above question, the expression for the number of particles crossing a unit area perpendicular to X-axis in unit time is given. First we need to express the quantities in the given expression in terms of their dimensions. Further accordingly substituting them in the above expression will enable us to determine the dimensions of D.
Formula used:
$\text{A=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]$
$\text{V=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]$
$\text{L=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right]$
$t=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]$
Complete step-by-step solution:
In the above question it is given that ‘n’ is the number of particles crossing a unit area perpendicular to X-axis in unit time. The dimensions of area is $\text{A=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]$ and that of time is $\text{t=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]$. Hence the dimension n(d)of n is equal to,
$\begin{align}
& n(d)=\dfrac{1}{A\times t} \\
& \Rightarrow n(d)=\dfrac{1}{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]\times \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]} \\
& \therefore n(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right] \\
\end{align}$
The difference of a same physical quantity has the same dimension. In the question it is mentioned that ${{n}_{1}}$ and ${{n}_{2}}$ are the number of particles per unit volume. Hence the dimension ${{n}_{2}}-{{n}_{1}}(d)$ of ${{n}_{2}}-{{n}_{1}}$ is
$\begin{align}
& {{n}_{2}}-{{n}_{1}}(d)=\dfrac{1}{V} \\
& \Rightarrow {{n}_{2}}-{{n}_{1}}(d)=\dfrac{1}{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]} \\
& \therefore {{n}_{2}}-{{n}_{1}}(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-3}}{{\text{T}}^{\text{0}}} \right] \\
\end{align}$
Similarly the dimension ${{x}_{2}}-{{x}_{1}}(d)$ of ${{x}_{2}}-{{x}_{1}}$ is given by,
$\begin{align}
& {{x}_{2}}-{{x}_{1}}(d)=L \\
& \therefore {{x}_{2}}-{{x}_{1}}(d)=\text{L=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right] \\
\end{align}$
From the relation given in the question, the dimension D(d) of diffusion constant is equal to,
$n(d)=-D(d)\dfrac{{{n}_{2}}-{{n}_{1}}(d)}{{{x}_{2}}-{{x}_{1}}(d)}$
$\Rightarrow \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right]=-D(d)\dfrac{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-3}}{{\text{T}}^{\text{0}}} \right]}{\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right]}$
$\begin{align}
& \Rightarrow \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right]=-D(d)\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-4}}{{\text{T}}^{\text{0}}} \right] \\
& \therefore D(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{-1}} \right] \\
\end{align}$
Therefore the dimension of D are $\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{-1}} \right]$
Note: Number of particles is basically a constant. Hence it does not have any dimension. It is also to be noted that we have ignored the negative sign in the above relation given. This is because a negative sign can be considered as -1. Since -1 is nothing but a constant, hence it can be implied that it is dimensionless. It is also to be noted that the powers of the fundamental dimensions of the above physical quantities are added or subtracted using the laws of exponent.
Formula used:
$\text{A=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]$
$\text{V=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]$
$\text{L=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right]$
$t=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]$
Complete step-by-step solution:
In the above question it is given that ‘n’ is the number of particles crossing a unit area perpendicular to X-axis in unit time. The dimensions of area is $\text{A=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]$ and that of time is $\text{t=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]$. Hence the dimension n(d)of n is equal to,
$\begin{align}
& n(d)=\dfrac{1}{A\times t} \\
& \Rightarrow n(d)=\dfrac{1}{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]\times \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]} \\
& \therefore n(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right] \\
\end{align}$
The difference of a same physical quantity has the same dimension. In the question it is mentioned that ${{n}_{1}}$ and ${{n}_{2}}$ are the number of particles per unit volume. Hence the dimension ${{n}_{2}}-{{n}_{1}}(d)$ of ${{n}_{2}}-{{n}_{1}}$ is
$\begin{align}
& {{n}_{2}}-{{n}_{1}}(d)=\dfrac{1}{V} \\
& \Rightarrow {{n}_{2}}-{{n}_{1}}(d)=\dfrac{1}{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]} \\
& \therefore {{n}_{2}}-{{n}_{1}}(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-3}}{{\text{T}}^{\text{0}}} \right] \\
\end{align}$
Similarly the dimension ${{x}_{2}}-{{x}_{1}}(d)$ of ${{x}_{2}}-{{x}_{1}}$ is given by,
$\begin{align}
& {{x}_{2}}-{{x}_{1}}(d)=L \\
& \therefore {{x}_{2}}-{{x}_{1}}(d)=\text{L=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right] \\
\end{align}$
From the relation given in the question, the dimension D(d) of diffusion constant is equal to,
$n(d)=-D(d)\dfrac{{{n}_{2}}-{{n}_{1}}(d)}{{{x}_{2}}-{{x}_{1}}(d)}$
$\Rightarrow \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right]=-D(d)\dfrac{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-3}}{{\text{T}}^{\text{0}}} \right]}{\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right]}$
$\begin{align}
& \Rightarrow \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right]=-D(d)\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-4}}{{\text{T}}^{\text{0}}} \right] \\
& \therefore D(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{-1}} \right] \\
\end{align}$
Therefore the dimension of D are $\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{-1}} \right]$
Note: Number of particles is basically a constant. Hence it does not have any dimension. It is also to be noted that we have ignored the negative sign in the above relation given. This is because a negative sign can be considered as -1. Since -1 is nothing but a constant, hence it can be implied that it is dimensionless. It is also to be noted that the powers of the fundamental dimensions of the above physical quantities are added or subtracted using the laws of exponent.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

