Answer

Verified

349.2k+ views

**Hint:**In the above question, the expression for the number of particles crossing a unit area perpendicular to X-axis in unit time is given. First we need to express the quantities in the given expression in terms of their dimensions. Further accordingly substituting them in the above expression will enable us to determine the dimensions of D.

**Formula used:**

$\text{A=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]$

$\text{V=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]$

$\text{L=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right]$

$t=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]$

**Complete step-by-step solution:**

In the above question it is given that ‘n’ is the number of particles crossing a unit area perpendicular to X-axis in unit time. The dimensions of area is $\text{A=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]$ and that of time is $\text{t=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]$. Hence the dimension n(d)of n is equal to,

$\begin{align}

& n(d)=\dfrac{1}{A\times t} \\

& \Rightarrow n(d)=\dfrac{1}{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]\times \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]} \\

& \therefore n(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right] \\

\end{align}$

The difference of a same physical quantity has the same dimension. In the question it is mentioned that ${{n}_{1}}$ and ${{n}_{2}}$ are the number of particles per unit volume. Hence the dimension ${{n}_{2}}-{{n}_{1}}(d)$ of ${{n}_{2}}-{{n}_{1}}$ is

$\begin{align}

& {{n}_{2}}-{{n}_{1}}(d)=\dfrac{1}{V} \\

& \Rightarrow {{n}_{2}}-{{n}_{1}}(d)=\dfrac{1}{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]} \\

& \therefore {{n}_{2}}-{{n}_{1}}(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-3}}{{\text{T}}^{\text{0}}} \right] \\

\end{align}$

Similarly the dimension ${{x}_{2}}-{{x}_{1}}(d)$ of ${{x}_{2}}-{{x}_{1}}$ is given by,

$\begin{align}

& {{x}_{2}}-{{x}_{1}}(d)=L \\

& \therefore {{x}_{2}}-{{x}_{1}}(d)=\text{L=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right] \\

\end{align}$

From the relation given in the question, the dimension D(d) of diffusion constant is equal to,

$n(d)=-D(d)\dfrac{{{n}_{2}}-{{n}_{1}}(d)}{{{x}_{2}}-{{x}_{1}}(d)}$

$\Rightarrow \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right]=-D(d)\dfrac{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-3}}{{\text{T}}^{\text{0}}} \right]}{\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right]}$

$\begin{align}

& \Rightarrow \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right]=-D(d)\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-4}}{{\text{T}}^{\text{0}}} \right] \\

& \therefore D(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{-1}} \right] \\

\end{align}$

Therefore the dimension of D are $\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{-1}} \right]$

**Note:**Number of particles is basically a constant. Hence it does not have any dimension. It is also to be noted that we have ignored the negative sign in the above relation given. This is because a negative sign can be considered as -1. Since -1 is nothing but a constant, hence it can be implied that it is dimensionless. It is also to be noted that the powers of the fundamental dimensions of the above physical quantities are added or subtracted using the laws of exponent.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Guru Purnima speech in English in 100 words class 7 english CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Select the word that is correctly spelled a Twelveth class 10 english CBSE