The number of irrational terms in the expansion of ${{\left( {{4}^{\dfrac{1}{5}}}+{{7}^{\dfrac{1}{10}}} \right)}^{45}}$ is?
(a) 40
(b) 5
(c) 41
(d) None of these
Answer
281.4k+ views
Hint: Use the fact that ${{\left( x+y \right)}^{n}}$ has (n + 1) terms and try to find the number of rational terms in the expression ${{\left( {{4}^{\dfrac{1}{5}}}+{{7}^{\dfrac{1}{10}}} \right)}^{45}}$. Use the formula for the general term of the expression ${{\left( x+y \right)}^{n}}$ given as ${{T}_{r+1}}={}^{n}{{C}_{r}}{{x}^{n-r}}{{y}^{r}}$ and simplify the general term of the expression ${{\left( {{4}^{\dfrac{1}{5}}}+{{7}^{\dfrac{1}{10}}} \right)}^{45}}$. Check for which values of r we will get the rational terms. Subtract the number of rational terms from the total number of terms to get the number of irrational terms.
Complete step by step answer:
Here we have been provided with the expression ${{\left( {{4}^{\dfrac{1}{5}}}+{{7}^{\dfrac{1}{10}}} \right)}^{45}}$ and we are asked number of irrational terms in its expansion. Here we will find the number of rational terms and then subtract it from the total number of terms to get the answer. Let us assume the expression as E, so we have,
$\Rightarrow E={{\left( {{4}^{\dfrac{1}{5}}}+{{7}^{\dfrac{1}{10}}} \right)}^{45}}$
We know that number of terms in the binomial expression ${{\left( x+y \right)}^{n}}$ is (n + 1), so the total number of terms in ${{\left( {{4}^{\dfrac{1}{5}}}+{{7}^{\dfrac{1}{10}}} \right)}^{45}}$ will be 46. Now, the general term of the expression ${{\left( x+y \right)}^{n}}$ is given as ${{T}_{r+1}}={}^{n}{{C}_{r}}{{x}^{n-r}}{{y}^{r}}$, so replacing x with ${{4}^{\dfrac{1}{5}}}$ and y with ${{7}^{\dfrac{1}{10}}}$ we get the general term of ${{\left( {{4}^{\dfrac{1}{5}}}+{{7}^{\dfrac{1}{10}}} \right)}^{45}}$ as: -
$\begin{align}
& \Rightarrow {{T}_{r+1}}={}^{45}{{C}_{r}}{{\left( {{4}^{\dfrac{1}{5}}} \right)}^{45-r}}{{\left( {{7}^{\dfrac{1}{10}}} \right)}^{r}} \\
& \Rightarrow {{T}_{r+1}}={}^{45}{{C}_{r}}\left( {{4}^{\dfrac{45-r}{5}}} \right)\left( {{7}^{\dfrac{r}{10}}} \right) \\
& \Rightarrow {{T}_{r+1}}={}^{45}{{C}_{r}}\left( {{4}^{9-\dfrac{r}{5}}} \right)\left( {{7}^{\dfrac{r}{10}}} \right) \\
\end{align}$
Using the formula of exponents given as ${{a}^{m-n}}=\dfrac{{{a}^{m}}}{{{a}^{n}}}$ we get,
$\Rightarrow {{T}_{r+1}}={}^{45}{{C}_{r}}\left( {{4}^{9}} \right)\left( \dfrac{{{7}^{\dfrac{r}{10}}}}{{{4}^{\dfrac{r}{5}}}} \right)$
Now, on observing the above relation of general terms we can say that the terms will be rational if and only if the value of r will be a multiple of 10, so the values of r can be 0, 1, 2, 3 and 4. We can see that there are 5 values of r so there will be five rational terms.
$\Rightarrow $ Number of irrational terms = 46 – 5
$\Rightarrow $ Number of irrational terms = 41
So, the correct answer is “Option c”.
Note: As you can see that there are 41 irrational terms in the expansion of the given expression so there will be 41 such values of r. This is the reason we haven’t taken those values of r as found the rational terms first which were only 5 in number. You must understand the condition so that it may take less time to solve the questions.
Complete step by step answer:
Here we have been provided with the expression ${{\left( {{4}^{\dfrac{1}{5}}}+{{7}^{\dfrac{1}{10}}} \right)}^{45}}$ and we are asked number of irrational terms in its expansion. Here we will find the number of rational terms and then subtract it from the total number of terms to get the answer. Let us assume the expression as E, so we have,
$\Rightarrow E={{\left( {{4}^{\dfrac{1}{5}}}+{{7}^{\dfrac{1}{10}}} \right)}^{45}}$
We know that number of terms in the binomial expression ${{\left( x+y \right)}^{n}}$ is (n + 1), so the total number of terms in ${{\left( {{4}^{\dfrac{1}{5}}}+{{7}^{\dfrac{1}{10}}} \right)}^{45}}$ will be 46. Now, the general term of the expression ${{\left( x+y \right)}^{n}}$ is given as ${{T}_{r+1}}={}^{n}{{C}_{r}}{{x}^{n-r}}{{y}^{r}}$, so replacing x with ${{4}^{\dfrac{1}{5}}}$ and y with ${{7}^{\dfrac{1}{10}}}$ we get the general term of ${{\left( {{4}^{\dfrac{1}{5}}}+{{7}^{\dfrac{1}{10}}} \right)}^{45}}$ as: -
$\begin{align}
& \Rightarrow {{T}_{r+1}}={}^{45}{{C}_{r}}{{\left( {{4}^{\dfrac{1}{5}}} \right)}^{45-r}}{{\left( {{7}^{\dfrac{1}{10}}} \right)}^{r}} \\
& \Rightarrow {{T}_{r+1}}={}^{45}{{C}_{r}}\left( {{4}^{\dfrac{45-r}{5}}} \right)\left( {{7}^{\dfrac{r}{10}}} \right) \\
& \Rightarrow {{T}_{r+1}}={}^{45}{{C}_{r}}\left( {{4}^{9-\dfrac{r}{5}}} \right)\left( {{7}^{\dfrac{r}{10}}} \right) \\
\end{align}$
Using the formula of exponents given as ${{a}^{m-n}}=\dfrac{{{a}^{m}}}{{{a}^{n}}}$ we get,
$\Rightarrow {{T}_{r+1}}={}^{45}{{C}_{r}}\left( {{4}^{9}} \right)\left( \dfrac{{{7}^{\dfrac{r}{10}}}}{{{4}^{\dfrac{r}{5}}}} \right)$
Now, on observing the above relation of general terms we can say that the terms will be rational if and only if the value of r will be a multiple of 10, so the values of r can be 0, 1, 2, 3 and 4. We can see that there are 5 values of r so there will be five rational terms.
$\Rightarrow $ Number of irrational terms = 46 – 5
$\Rightarrow $ Number of irrational terms = 41
So, the correct answer is “Option c”.
Note: As you can see that there are 41 irrational terms in the expansion of the given expression so there will be 41 such values of r. This is the reason we haven’t taken those values of r as found the rational terms first which were only 5 in number. You must understand the condition so that it may take less time to solve the questions.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which one of the following places is unlikely to be class 8 physics CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Elucidate the structure of fructose class 12 chemistry CBSE

What is pollution? How many types of pollution? Define it
