
The number of integer’s n with $100 \leqslant n \leqslant 999$and containing at most two distinct digits is:
$
{\text{a}}{\text{. }}252 \\
{\text{b}}{\text{. }}280 \\
{\text{c}}{\text{. }}324 \\
{\text{d}}{\text{. }}360 \\
$
Answer
609.6k+ views
Hint: - Calculate total numbers having distinct digits then subtract this from total numbers.
Total three digit numbers between $100 \leqslant n \leqslant 999$
$999 - 99 = 900$, because 999 and 100 are included.
Now, a three digit number is to be formed from the digits $0,1,2,3,4,5,6,7,8,9$
$ \bullet \bullet \bullet $
Since the left most place i.e. hundred’s place cannot have zero.
So, there are 9 ways to fill hundred’s place.
Since, we consider the number with distinct digits, therefore repletion is not allowed, so, ten’s place can be filled by 9 remaining ways.
So, ten’s place can be filled in 9 ways.
Similarly, to fill the unit's place, we have 8 digits remaining.
So, the unit's place can be filled by 8 ways.
So, the required number of ways in which three distinct digit number can be formed are
$9 \times 9 \times 8 = 648$
So, the numbers having all the distinct digits $ = 648$
Thus, the remaining numbers containing at most two distinct digits $ = $ total numbers $ - $numbers having all the distinct digits.
$ = 900 - 648 = 252$
Hence, option $a$ is correct.
Note: - In such types of questions first calculate the total numbers, then calculate the total numbers having distinct digits using the procedure which is stated above, then subtract these values we will get the required answer.
Total three digit numbers between $100 \leqslant n \leqslant 999$
$999 - 99 = 900$, because 999 and 100 are included.
Now, a three digit number is to be formed from the digits $0,1,2,3,4,5,6,7,8,9$
$ \bullet \bullet \bullet $
Since the left most place i.e. hundred’s place cannot have zero.
So, there are 9 ways to fill hundred’s place.
Since, we consider the number with distinct digits, therefore repletion is not allowed, so, ten’s place can be filled by 9 remaining ways.
So, ten’s place can be filled in 9 ways.
Similarly, to fill the unit's place, we have 8 digits remaining.
So, the unit's place can be filled by 8 ways.
So, the required number of ways in which three distinct digit number can be formed are
$9 \times 9 \times 8 = 648$
So, the numbers having all the distinct digits $ = 648$
Thus, the remaining numbers containing at most two distinct digits $ = $ total numbers $ - $numbers having all the distinct digits.
$ = 900 - 648 = 252$
Hence, option $a$ is correct.
Note: - In such types of questions first calculate the total numbers, then calculate the total numbers having distinct digits using the procedure which is stated above, then subtract these values we will get the required answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

