
The number of benzylic hydrogen atoms in the ethylbenzene is:
A) 3
B) 5
C) 2
D) 7
Answer
565.8k+ views
Hint: The benzylic hydrogen atoms are referred to as the total number of hydrogen atoms that are attached to the carbon atom which is next to the benzene ring. The benzylic positions are the position that is neighbouring to the ring and can take part in conjugation.
Complete Solution :
- Ethylbenzene is an organic molecule. The general formula of ethylbenzene is as $\text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{H}}_{\text{3}}}\text{ }$. Here, an ethyl group is attached to one of the carbon atoms of the aromatic ring. It is also known as the ethylbenzol or phenyl ethane. It belongs to the benzene and its substituent derivative class.
- Here, the compound contains the one benzene ring, thus it is monocyclic.
The structure of ethylbenzene is as follows:
We are interested to determine the benzylic hydrogens on the ethyl benzene.
- Let's first understand what a benzylic position in organic molecules is. The position which is adjacent to the aromatic ring that can conjugate with the aromatic system is termed as the benzylic position.
- This position has special features.
- The benzylic hydrogen atoms are referred to as the total number of hydrogen atoms that are attached to the carbon atom which is next to the benzene ring.
- The ethylbenzene has the ethyl bonded to the benzene ring. The carbon atom of the ethyl groups which is forming a bond with the ring has two hydrogen atoms on it. These hydrogens atoms are called the benzylic hydrogen atoms.
Thus, ethylbenzene has 2 benzylic hydrogen atoms.
So, the correct answer is “Option C”.
Note: Note that, the benzylic positions are very reactive and are useful as the synthetic route. The reason is, the benzylic carbon is conjugated with the pi aromatic system. Thus it does take part in the extended conjugation. The resonance stabilizes the benzylic carbon atom, thus it is susceptible to the substitution or elimination reactions such as: \[\text{ }{{\text{S}}_{\text{N}}}\text{1 }\] ,\[\text{ }{{\text{S}}_{\text{N}}}\text{2 }\], E, etc.
Complete Solution :
- Ethylbenzene is an organic molecule. The general formula of ethylbenzene is as $\text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{H}}_{\text{3}}}\text{ }$. Here, an ethyl group is attached to one of the carbon atoms of the aromatic ring. It is also known as the ethylbenzol or phenyl ethane. It belongs to the benzene and its substituent derivative class.
- Here, the compound contains the one benzene ring, thus it is monocyclic.
The structure of ethylbenzene is as follows:
We are interested to determine the benzylic hydrogens on the ethyl benzene.
- Let's first understand what a benzylic position in organic molecules is. The position which is adjacent to the aromatic ring that can conjugate with the aromatic system is termed as the benzylic position.
- This position has special features.
- The benzylic hydrogen atoms are referred to as the total number of hydrogen atoms that are attached to the carbon atom which is next to the benzene ring.
- The ethylbenzene has the ethyl bonded to the benzene ring. The carbon atom of the ethyl groups which is forming a bond with the ring has two hydrogen atoms on it. These hydrogens atoms are called the benzylic hydrogen atoms.
Thus, ethylbenzene has 2 benzylic hydrogen atoms.
So, the correct answer is “Option C”.
Note: Note that, the benzylic positions are very reactive and are useful as the synthetic route. The reason is, the benzylic carbon is conjugated with the pi aromatic system. Thus it does take part in the extended conjugation. The resonance stabilizes the benzylic carbon atom, thus it is susceptible to the substitution or elimination reactions such as: \[\text{ }{{\text{S}}_{\text{N}}}\text{1 }\] ,\[\text{ }{{\text{S}}_{\text{N}}}\text{2 }\], E, etc.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

