Answer
Verified
456k+ views
Hint: Here, we will use the selection that all the 4 are different using the combinations
\[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen. Then simplify to find the required value.
Complete step-by-step answer:
We are given that the word is COMBINATION.
Since we know that some of the letters are repeated, first we will count the letters in the word 1 C’s, 1 M’s, 1 B’s 1 A’s, 1 T’s, 2 O’s, 2 I’s and 2 N’s.
CASE 1:
When 4 letters are distinct, then we will have
\[ \Rightarrow {}^8{C_4} \times 4!\]
Using the formula for the combinations is \[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen in the above equation, we get
\[
\Rightarrow \dfrac{{8!}}{{4!\left( {8 - 4} \right)!}} \times 4! \\
\Rightarrow \dfrac{{8!}}{{4!4!}} \times 4! \\
\]
Simplifying the factorials in the above equation, we get
\[
\Rightarrow \dfrac{{8 \times 7 \times 6 \times 5 \times 4!}}{{4!4!}} \times 4! \\
\Rightarrow 8 \times 7 \times 6 \times 5 \\
\Rightarrow 1680{\text{ ......eq.(1)}} \\
\]
Thus, there are 1680 ways to make a word, as there 8 different letters in word and letters can be arranged among themselves in \[4!\] ways.
CASE 2:
When 2 letters are repeated, so we will choose the repeated letter from O, I, N in \[{}^3{C_1}\] ways and the remaining two can be selected from 7 in \[{}^7{C_2}\] ways and are arranged among themselves in \[\dfrac{{4!}}{{2!}}\] ways as there are two repeated letters.
So, we have
\[ \Rightarrow {}^3{C_1} \times \dfrac{{4!}}{{2!}} \times {}^7{C_2}\]
Using the formula of the combinations in the above equation, we get
\[
\Rightarrow \dfrac{{3!}}{{1!\left( {3 - 1} \right)!}} \times \dfrac{{4!}}{{2!}} \times \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}} \\
\Rightarrow \dfrac{{3!}}{{1!2!}} \times \dfrac{{4!}}{{2!}} \times \dfrac{{7!}}{{2!5!}} \\
\]
Simplifying the factorials in the above equation, we get
\[
\Rightarrow \dfrac{{3 \times 2!}}{{1!2!}} \times \dfrac{{4 \times 3 \times 2!}}{{2!}} \times \dfrac{{7 \times 6 \times 5!}}{{2 \times 5!}} \\
\Rightarrow \dfrac{3}{1} \times 12 \times \dfrac{{7 \times 6}}{2} \\
\Rightarrow 3 \times 12 \times 21 \\
\Rightarrow 756{\text{ ......eq.(2)}} \\
\]
CASE 3:
When 2 letters of one kind and two alike of another kind, so \[{}^3{C_2}\] ways to find two letter of one kind and other two alike of another kind and are arranged among themselves in \[\dfrac{{4!}}{{2!2!}}\] ways as there are two repeated letters.
So, we have
\[ \Rightarrow {}^3{C_2} \times \dfrac{{4!}}{{2!}}\]
Using the formula of the combinations in the above equation, we get
\[
\Rightarrow \dfrac{{3!}}{{2!\left( {3 - 2} \right)!}} \times \dfrac{{4!}}{{2! \times 2!}} \\
\Rightarrow \dfrac{{3!}}{{2!1!}} \times \dfrac{{4!}}{{2! \times 2!}} \\
\]
Simplifying the factorials in the above equation, we get
\[
\Rightarrow \dfrac{{3 \times 2!}}{{1!2!}} \times \dfrac{{4 \times 3 \times 2!}}{{2 \times 2!}} \\
\Rightarrow \dfrac{3}{1} \times \dfrac{{4 \times 3}}{2} \\
\Rightarrow 3 \times 6 \\
\Rightarrow 18{\text{ ......eq.(3)}} \\
\]
Adding the equation (1), equation (2) and equation (3) to find required value, we get
\[
\Rightarrow 1680 + 756 + 18 \\
\Rightarrow 2454{\text{ ways}} \\
\]
Hence, the option B is correct.
Note: Some students use the formula of permutation, \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\] instead of combinations is \[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen, which is wrong. If we go with , then we will end up considering the similar letters as distinct letters and will get more than the possible cases. Since we know that permutation is the number of arrangements of all those elements that have been chosen in the time of combination, we say \[{}^n{P_r} = r!{}^n{C_r}\].
\[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen. Then simplify to find the required value.
Complete step-by-step answer:
We are given that the word is COMBINATION.
Since we know that some of the letters are repeated, first we will count the letters in the word 1 C’s, 1 M’s, 1 B’s 1 A’s, 1 T’s, 2 O’s, 2 I’s and 2 N’s.
CASE 1:
When 4 letters are distinct, then we will have
\[ \Rightarrow {}^8{C_4} \times 4!\]
Using the formula for the combinations is \[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen in the above equation, we get
\[
\Rightarrow \dfrac{{8!}}{{4!\left( {8 - 4} \right)!}} \times 4! \\
\Rightarrow \dfrac{{8!}}{{4!4!}} \times 4! \\
\]
Simplifying the factorials in the above equation, we get
\[
\Rightarrow \dfrac{{8 \times 7 \times 6 \times 5 \times 4!}}{{4!4!}} \times 4! \\
\Rightarrow 8 \times 7 \times 6 \times 5 \\
\Rightarrow 1680{\text{ ......eq.(1)}} \\
\]
Thus, there are 1680 ways to make a word, as there 8 different letters in word and letters can be arranged among themselves in \[4!\] ways.
CASE 2:
When 2 letters are repeated, so we will choose the repeated letter from O, I, N in \[{}^3{C_1}\] ways and the remaining two can be selected from 7 in \[{}^7{C_2}\] ways and are arranged among themselves in \[\dfrac{{4!}}{{2!}}\] ways as there are two repeated letters.
So, we have
\[ \Rightarrow {}^3{C_1} \times \dfrac{{4!}}{{2!}} \times {}^7{C_2}\]
Using the formula of the combinations in the above equation, we get
\[
\Rightarrow \dfrac{{3!}}{{1!\left( {3 - 1} \right)!}} \times \dfrac{{4!}}{{2!}} \times \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}} \\
\Rightarrow \dfrac{{3!}}{{1!2!}} \times \dfrac{{4!}}{{2!}} \times \dfrac{{7!}}{{2!5!}} \\
\]
Simplifying the factorials in the above equation, we get
\[
\Rightarrow \dfrac{{3 \times 2!}}{{1!2!}} \times \dfrac{{4 \times 3 \times 2!}}{{2!}} \times \dfrac{{7 \times 6 \times 5!}}{{2 \times 5!}} \\
\Rightarrow \dfrac{3}{1} \times 12 \times \dfrac{{7 \times 6}}{2} \\
\Rightarrow 3 \times 12 \times 21 \\
\Rightarrow 756{\text{ ......eq.(2)}} \\
\]
CASE 3:
When 2 letters of one kind and two alike of another kind, so \[{}^3{C_2}\] ways to find two letter of one kind and other two alike of another kind and are arranged among themselves in \[\dfrac{{4!}}{{2!2!}}\] ways as there are two repeated letters.
So, we have
\[ \Rightarrow {}^3{C_2} \times \dfrac{{4!}}{{2!}}\]
Using the formula of the combinations in the above equation, we get
\[
\Rightarrow \dfrac{{3!}}{{2!\left( {3 - 2} \right)!}} \times \dfrac{{4!}}{{2! \times 2!}} \\
\Rightarrow \dfrac{{3!}}{{2!1!}} \times \dfrac{{4!}}{{2! \times 2!}} \\
\]
Simplifying the factorials in the above equation, we get
\[
\Rightarrow \dfrac{{3 \times 2!}}{{1!2!}} \times \dfrac{{4 \times 3 \times 2!}}{{2 \times 2!}} \\
\Rightarrow \dfrac{3}{1} \times \dfrac{{4 \times 3}}{2} \\
\Rightarrow 3 \times 6 \\
\Rightarrow 18{\text{ ......eq.(3)}} \\
\]
Adding the equation (1), equation (2) and equation (3) to find required value, we get
\[
\Rightarrow 1680 + 756 + 18 \\
\Rightarrow 2454{\text{ ways}} \\
\]
Hence, the option B is correct.
Note: Some students use the formula of permutation, \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\] instead of combinations is \[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen, which is wrong. If we go with , then we will end up considering the similar letters as distinct letters and will get more than the possible cases. Since we know that permutation is the number of arrangements of all those elements that have been chosen in the time of combination, we say \[{}^n{P_r} = r!{}^n{C_r}\].
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE