Answer

Verified

346.8k+ views

**Hint:**Type of question is based on the simple log calculation. As we had given an equation which we need to simplify and relate the answer with the given option. So we will solve the given problem to reduce it to a simpler value using the log identity.

**Complete step by step answer:**

So moving ahead with the question, we have$\text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( {{\log }_{6}}2 \right)}^{2}}$

So by using the identity${{\log }_{b}}a=\dfrac{1}{{{\log }_{a}}b}$ in${{\left( {{\log }_{6}}2 \right)}^{2}}$, so we will get the new equation;

\[\text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{{{\log }_{2}}6} \right)}^{2}}\]

Now by using the identity of ${{\log }_{a}}mn={{\log }_{a}}m+{{\log }_{a}}n$in \[{{\log }_{2}}6\] so we will get the new equation;

\[\begin{align}

& \text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{{{\log }_{2}}2+{{\log }_{2}}3} \right)}^{2}} \\

& \text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{1+{{\log }_{2}}3} \right)}^{2}} \\

\end{align}\]

By using the identity ${{\log }_{b}}a=\dfrac{1}{{{\log }_{a}}b}$again. New equation we will get;

\[\begin{align}

& \text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{1+{{\log }_{2}}3} \right)}^{2}} \\

& \text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{1+\dfrac{1}{{{\log }_{3}}2}} \right)}^{2}} \\

\end{align}\]

Since, \[{{\log }_{3}}2\]is in the function, let us assume it as ‘a’ as it will make the equation seem to be simple. So new equation we will get;

\[\begin{align}

& \text{N}=\dfrac{1+2a}{{{\left( 1+a \right)}^{2}}}+{{\left( \dfrac{1}{1+\dfrac{1}{a}} \right)}^{2}} \\

& \text{N}=\dfrac{1+2a}{{{\left( 1+a \right)}^{2}}}+{{\left( \dfrac{a}{a+1} \right)}^{2}} \\

& \text{N}=\dfrac{1+2a}{{{\left( 1+a \right)}^{2}}}+{{\left( \dfrac{a}{a+1} \right)}^{2}} \\

\end{align}\]

Since both have same denominator seo we can directly add the equation, so we will get the equation;

\[\begin{align}

& \text{N}=\dfrac{1+2a}{{{\left( 1+a \right)}^{2}}}+{{\left( \dfrac{a}{a+1} \right)}^{2}} \\

& \text{N}=\dfrac{1+2a+{{a}^{2}}}{{{\left( 1+a \right)}^{2}}} \\

\end{align}\]

Since we know that \[{{\left( 1+a \right)}^{2}}=1+2a+{{a}^{2}}\]is an identity, so we can write the above equation as;

\[\begin{align}

& \text{N}=\dfrac{1+2a+{{a}^{2}}}{{{\left( 1+a \right)}^{2}}} \\

& \text{N}=\dfrac{{{\left( 1+a \right)}^{2}}}{{{\left( 1+a \right)}^{2}}} \\

& N=1 \\

\end{align}\]

Hence all values cancel and we get the answer 1.

Since 1 is not a prime number. And not an irrational number. As the c option says that its value should be less than \[{{\log }_{3}}\pi \]which is approx. greater than 1, hence we can say this option is correct.

**So, the correct answer is “Option C”.**

**Note:**As we had assumed the \[{{\log }_{3}}2\]value a variable ’a’ which ultimately get cancel at last, so answer we got is independent of \[{{\log }_{3}}2\]. Moreover if you do it without assuming the value with some variable then also you will get the same answer, by assuming we have only motive to have a simple look of the equation.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Difference Between Plant Cell and Animal Cell

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE