Answer
Verified
378.3k+ views
Hint: Type of question is based on the simple log calculation. As we had given an equation which we need to simplify and relate the answer with the given option. So we will solve the given problem to reduce it to a simpler value using the log identity.
Complete step by step answer:
So moving ahead with the question, we have$\text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( {{\log }_{6}}2 \right)}^{2}}$
So by using the identity${{\log }_{b}}a=\dfrac{1}{{{\log }_{a}}b}$ in${{\left( {{\log }_{6}}2 \right)}^{2}}$, so we will get the new equation;
\[\text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{{{\log }_{2}}6} \right)}^{2}}\]
Now by using the identity of ${{\log }_{a}}mn={{\log }_{a}}m+{{\log }_{a}}n$in \[{{\log }_{2}}6\] so we will get the new equation;
\[\begin{align}
& \text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{{{\log }_{2}}2+{{\log }_{2}}3} \right)}^{2}} \\
& \text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{1+{{\log }_{2}}3} \right)}^{2}} \\
\end{align}\]
By using the identity ${{\log }_{b}}a=\dfrac{1}{{{\log }_{a}}b}$again. New equation we will get;
\[\begin{align}
& \text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{1+{{\log }_{2}}3} \right)}^{2}} \\
& \text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{1+\dfrac{1}{{{\log }_{3}}2}} \right)}^{2}} \\
\end{align}\]
Since, \[{{\log }_{3}}2\]is in the function, let us assume it as ‘a’ as it will make the equation seem to be simple. So new equation we will get;
\[\begin{align}
& \text{N}=\dfrac{1+2a}{{{\left( 1+a \right)}^{2}}}+{{\left( \dfrac{1}{1+\dfrac{1}{a}} \right)}^{2}} \\
& \text{N}=\dfrac{1+2a}{{{\left( 1+a \right)}^{2}}}+{{\left( \dfrac{a}{a+1} \right)}^{2}} \\
& \text{N}=\dfrac{1+2a}{{{\left( 1+a \right)}^{2}}}+{{\left( \dfrac{a}{a+1} \right)}^{2}} \\
\end{align}\]
Since both have same denominator seo we can directly add the equation, so we will get the equation;
\[\begin{align}
& \text{N}=\dfrac{1+2a}{{{\left( 1+a \right)}^{2}}}+{{\left( \dfrac{a}{a+1} \right)}^{2}} \\
& \text{N}=\dfrac{1+2a+{{a}^{2}}}{{{\left( 1+a \right)}^{2}}} \\
\end{align}\]
Since we know that \[{{\left( 1+a \right)}^{2}}=1+2a+{{a}^{2}}\]is an identity, so we can write the above equation as;
\[\begin{align}
& \text{N}=\dfrac{1+2a+{{a}^{2}}}{{{\left( 1+a \right)}^{2}}} \\
& \text{N}=\dfrac{{{\left( 1+a \right)}^{2}}}{{{\left( 1+a \right)}^{2}}} \\
& N=1 \\
\end{align}\]
Hence all values cancel and we get the answer 1.
Since 1 is not a prime number. And not an irrational number. As the c option says that its value should be less than \[{{\log }_{3}}\pi \]which is approx. greater than 1, hence we can say this option is correct.
So, the correct answer is “Option C”.
Note: As we had assumed the \[{{\log }_{3}}2\]value a variable ’a’ which ultimately get cancel at last, so answer we got is independent of \[{{\log }_{3}}2\]. Moreover if you do it without assuming the value with some variable then also you will get the same answer, by assuming we have only motive to have a simple look of the equation.
Complete step by step answer:
So moving ahead with the question, we have$\text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( {{\log }_{6}}2 \right)}^{2}}$
So by using the identity${{\log }_{b}}a=\dfrac{1}{{{\log }_{a}}b}$ in${{\left( {{\log }_{6}}2 \right)}^{2}}$, so we will get the new equation;
\[\text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{{{\log }_{2}}6} \right)}^{2}}\]
Now by using the identity of ${{\log }_{a}}mn={{\log }_{a}}m+{{\log }_{a}}n$in \[{{\log }_{2}}6\] so we will get the new equation;
\[\begin{align}
& \text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{{{\log }_{2}}2+{{\log }_{2}}3} \right)}^{2}} \\
& \text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{1+{{\log }_{2}}3} \right)}^{2}} \\
\end{align}\]
By using the identity ${{\log }_{b}}a=\dfrac{1}{{{\log }_{a}}b}$again. New equation we will get;
\[\begin{align}
& \text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{1+{{\log }_{2}}3} \right)}^{2}} \\
& \text{N}=\dfrac{1+2{{\log }_{3}}2}{{{\left( 1+{{\log }_{3}}2 \right)}^{2}}}+{{\left( \dfrac{1}{1+\dfrac{1}{{{\log }_{3}}2}} \right)}^{2}} \\
\end{align}\]
Since, \[{{\log }_{3}}2\]is in the function, let us assume it as ‘a’ as it will make the equation seem to be simple. So new equation we will get;
\[\begin{align}
& \text{N}=\dfrac{1+2a}{{{\left( 1+a \right)}^{2}}}+{{\left( \dfrac{1}{1+\dfrac{1}{a}} \right)}^{2}} \\
& \text{N}=\dfrac{1+2a}{{{\left( 1+a \right)}^{2}}}+{{\left( \dfrac{a}{a+1} \right)}^{2}} \\
& \text{N}=\dfrac{1+2a}{{{\left( 1+a \right)}^{2}}}+{{\left( \dfrac{a}{a+1} \right)}^{2}} \\
\end{align}\]
Since both have same denominator seo we can directly add the equation, so we will get the equation;
\[\begin{align}
& \text{N}=\dfrac{1+2a}{{{\left( 1+a \right)}^{2}}}+{{\left( \dfrac{a}{a+1} \right)}^{2}} \\
& \text{N}=\dfrac{1+2a+{{a}^{2}}}{{{\left( 1+a \right)}^{2}}} \\
\end{align}\]
Since we know that \[{{\left( 1+a \right)}^{2}}=1+2a+{{a}^{2}}\]is an identity, so we can write the above equation as;
\[\begin{align}
& \text{N}=\dfrac{1+2a+{{a}^{2}}}{{{\left( 1+a \right)}^{2}}} \\
& \text{N}=\dfrac{{{\left( 1+a \right)}^{2}}}{{{\left( 1+a \right)}^{2}}} \\
& N=1 \\
\end{align}\]
Hence all values cancel and we get the answer 1.
Since 1 is not a prime number. And not an irrational number. As the c option says that its value should be less than \[{{\log }_{3}}\pi \]which is approx. greater than 1, hence we can say this option is correct.
So, the correct answer is “Option C”.
Note: As we had assumed the \[{{\log }_{3}}2\]value a variable ’a’ which ultimately get cancel at last, so answer we got is independent of \[{{\log }_{3}}2\]. Moreover if you do it without assuming the value with some variable then also you will get the same answer, by assuming we have only motive to have a simple look of the equation.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Harsha Charita was written by A Kalidasa B Vishakhadatta class 7 social science CBSE
Which are the Top 10 Largest Countries of the World?
Banabhatta wrote Harshavardhanas biography What is class 6 social science CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE