Answer

Verified

449.1k+ views

Hint: In order to solve such type of question firstly there are number of wheels in number lock of suitcase$ = 4$.As per given statement there is no repetition of digit between From $0$ to $9$ i.e. first digit can be between $0$ to $9$.Thus no of digit $ = 10$.

Complete step-by-step answer:

Since, we have given that repetition is not allowed.

Now, the first wheel can have any one of the tens digits from $0$ to $9$. So, a wheel can have any of the $10$ digits.

Since, repetition is not allowed, so the second wheel can have any of the remaining $9$ digits.

Similarly, the third wheel can have any of the remaining 8 digits.

And the fourth wheel can have any of the remaining $7$ digits.

So, number of four digit lock code that can be formed without repetition of digit$ = 10 \times 9 \times 8 \times 7 = 5040$

So, a total four digit number formed$ = 5040$ .

But since, the lock can open with only one of the all four-digit numbers.

Hence, required probability$ = \dfrac{1}{{5040}}$.

Note: Whenever we face such a type of question the key concept is that. Since there is no repetition one digit is used cannot be repeated again and as per there are a number of wheels in the number lock of suitcase$ = 4$ there are just 4 digits and cannot be exceeded.

Complete step-by-step answer:

Since, we have given that repetition is not allowed.

Now, the first wheel can have any one of the tens digits from $0$ to $9$. So, a wheel can have any of the $10$ digits.

Since, repetition is not allowed, so the second wheel can have any of the remaining $9$ digits.

Similarly, the third wheel can have any of the remaining 8 digits.

And the fourth wheel can have any of the remaining $7$ digits.

So, number of four digit lock code that can be formed without repetition of digit$ = 10 \times 9 \times 8 \times 7 = 5040$

So, a total four digit number formed$ = 5040$ .

But since, the lock can open with only one of the all four-digit numbers.

Hence, required probability$ = \dfrac{1}{{5040}}$.

Note: Whenever we face such a type of question the key concept is that. Since there is no repetition one digit is used cannot be repeated again and as per there are a number of wheels in the number lock of suitcase$ = 4$ there are just 4 digits and cannot be exceeded.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How many crores make 10 million class 7 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE