
The number lock of a suitcase has 4 wheels each labelled with ten digits i.e. From $0$ to 9. The lock opens with a sequence of four digits with no repeats. What is the probability of a person getting the right sequence to open the suitcase?
Answer
595.8k+ views
Hint: In order to solve such type of question firstly there are number of wheels in number lock of suitcase$ = 4$.As per given statement there is no repetition of digit between From $0$ to $9$ i.e. first digit can be between $0$ to $9$.Thus no of digit $ = 10$.
Complete step-by-step answer:
Since, we have given that repetition is not allowed.
Now, the first wheel can have any one of the tens digits from $0$ to $9$. So, a wheel can have any of the $10$ digits.
Since, repetition is not allowed, so the second wheel can have any of the remaining $9$ digits.
Similarly, the third wheel can have any of the remaining 8 digits.
And the fourth wheel can have any of the remaining $7$ digits.
So, number of four digit lock code that can be formed without repetition of digit$ = 10 \times 9 \times 8 \times 7 = 5040$
So, a total four digit number formed$ = 5040$ .
But since, the lock can open with only one of the all four-digit numbers.
Hence, required probability$ = \dfrac{1}{{5040}}$.
Note: Whenever we face such a type of question the key concept is that. Since there is no repetition one digit is used cannot be repeated again and as per there are a number of wheels in the number lock of suitcase$ = 4$ there are just 4 digits and cannot be exceeded.
Complete step-by-step answer:
Since, we have given that repetition is not allowed.
Now, the first wheel can have any one of the tens digits from $0$ to $9$. So, a wheel can have any of the $10$ digits.
Since, repetition is not allowed, so the second wheel can have any of the remaining $9$ digits.
Similarly, the third wheel can have any of the remaining 8 digits.
And the fourth wheel can have any of the remaining $7$ digits.
So, number of four digit lock code that can be formed without repetition of digit$ = 10 \times 9 \times 8 \times 7 = 5040$
So, a total four digit number formed$ = 5040$ .
But since, the lock can open with only one of the all four-digit numbers.
Hence, required probability$ = \dfrac{1}{{5040}}$.
Note: Whenever we face such a type of question the key concept is that. Since there is no repetition one digit is used cannot be repeated again and as per there are a number of wheels in the number lock of suitcase$ = 4$ there are just 4 digits and cannot be exceeded.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
What is the difference between lightdependent and lightindependent class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

How are lightdependent and lightindependent reactions class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

