
The number lock of a suitcase has 4 wheels each labelled with ten digits i.e. From $0$ to 9. The lock opens with a sequence of four digits with no repeats. What is the probability of a person getting the right sequence to open the suitcase?
Answer
606k+ views
Hint: In order to solve such type of question firstly there are number of wheels in number lock of suitcase$ = 4$.As per given statement there is no repetition of digit between From $0$ to $9$ i.e. first digit can be between $0$ to $9$.Thus no of digit $ = 10$.
Complete step-by-step answer:
Since, we have given that repetition is not allowed.
Now, the first wheel can have any one of the tens digits from $0$ to $9$. So, a wheel can have any of the $10$ digits.
Since, repetition is not allowed, so the second wheel can have any of the remaining $9$ digits.
Similarly, the third wheel can have any of the remaining 8 digits.
And the fourth wheel can have any of the remaining $7$ digits.
So, number of four digit lock code that can be formed without repetition of digit$ = 10 \times 9 \times 8 \times 7 = 5040$
So, a total four digit number formed$ = 5040$ .
But since, the lock can open with only one of the all four-digit numbers.
Hence, required probability$ = \dfrac{1}{{5040}}$.
Note: Whenever we face such a type of question the key concept is that. Since there is no repetition one digit is used cannot be repeated again and as per there are a number of wheels in the number lock of suitcase$ = 4$ there are just 4 digits and cannot be exceeded.
Complete step-by-step answer:
Since, we have given that repetition is not allowed.
Now, the first wheel can have any one of the tens digits from $0$ to $9$. So, a wheel can have any of the $10$ digits.
Since, repetition is not allowed, so the second wheel can have any of the remaining $9$ digits.
Similarly, the third wheel can have any of the remaining 8 digits.
And the fourth wheel can have any of the remaining $7$ digits.
So, number of four digit lock code that can be formed without repetition of digit$ = 10 \times 9 \times 8 \times 7 = 5040$
So, a total four digit number formed$ = 5040$ .
But since, the lock can open with only one of the all four-digit numbers.
Hence, required probability$ = \dfrac{1}{{5040}}$.
Note: Whenever we face such a type of question the key concept is that. Since there is no repetition one digit is used cannot be repeated again and as per there are a number of wheels in the number lock of suitcase$ = 4$ there are just 4 digits and cannot be exceeded.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

