The $n^{th}$ term of a sequence is $2n-3$, find its $15^{th}$ term.
Answer
Verified
477.9k+ views
Hint: This question can be done by easily understanding the concepts of arithmetic progression which are mentioned below: -
$n^{th}$ term of an A.P (arithmetic progression) is given by ${T_n} = a + (n - 1)d$ where a= first term of the sequence and d=common difference which is given by $d = {T_n} - {T_{n - 1}}$. As already they have given $T_n$ of the sequence, we will just substitute the value of ‘n’ to get the required answer.
Complete step-by-step answer:
Here in this question $n^{th}$ term of a sequence is directly given i.e. (2n-3) so we can directly use this $n^{th}$ term and can find $15^{th}$ term
$ \Rightarrow {T_n} = 2n - 3$ .............equation (1)
Now we have to find the $15^{th}$ term so we will put n=15 in equation 1 to find the $15^{th}$ term.
$ \Rightarrow {T_{15}} = 2(15) - 3$
$ \Rightarrow {T_{15}} = 30 - 3$
$\therefore {T_{15}} = 27$
Therefore the $15^{th}$ term of the sequence will be 27.
Additional Information: In mathematics there are three types of progressions:-
*Arithmetic progression
*Geometric progression
*Harmonic progression
Definition of arithmetic progression: - An arithmetic sequence or progression is defined as a sequence in which for every pair of consecutive terms the second number is obtained by adding a fixed number to the first one. Difference between two consecutive terms is always a constant term.
Note: Alternate method: - We can also solve this question by using formula ${T_n} = 2n - 3$
Now we will find ${T_1}$ term by putting n=1
$ \Rightarrow {T_1} = 2(1) - 3 = - 1$
$\therefore {T_1} = - 1$
Now we will find ${T_2}$ term by putting n=2
$ \Rightarrow {T_2} = 2(2) - 3 = 1$
$\therefore {T_2} = 1$
So, common difference can be find out using formula $d = {T_n} - {T_{n - 1}}$
$ \Rightarrow d = {T_2} - {T_1}$
$ \Rightarrow d = 1 - ( - 1)$ (Putting the values)
$\therefore d = 2$
Therefore common difference is 2
Now we will find $15^{th}$ term by applying formula ${T_n} = a + (n - 1)d$
$ \Rightarrow {T_{15}} = - 1 + (15 - 1)2$ (Putting values of a=1, n=15, d=2)
$ \Rightarrow {T_{15}} = - 1 + (14)2$
$ \Rightarrow {T_{15}} = - 1 + 28$
$\therefore {T_{15}} = 27$
$n^{th}$ term of an A.P (arithmetic progression) is given by ${T_n} = a + (n - 1)d$ where a= first term of the sequence and d=common difference which is given by $d = {T_n} - {T_{n - 1}}$. As already they have given $T_n$ of the sequence, we will just substitute the value of ‘n’ to get the required answer.
Complete step-by-step answer:
Here in this question $n^{th}$ term of a sequence is directly given i.e. (2n-3) so we can directly use this $n^{th}$ term and can find $15^{th}$ term
$ \Rightarrow {T_n} = 2n - 3$ .............equation (1)
Now we have to find the $15^{th}$ term so we will put n=15 in equation 1 to find the $15^{th}$ term.
$ \Rightarrow {T_{15}} = 2(15) - 3$
$ \Rightarrow {T_{15}} = 30 - 3$
$\therefore {T_{15}} = 27$
Therefore the $15^{th}$ term of the sequence will be 27.
Additional Information: In mathematics there are three types of progressions:-
*Arithmetic progression
*Geometric progression
*Harmonic progression
Definition of arithmetic progression: - An arithmetic sequence or progression is defined as a sequence in which for every pair of consecutive terms the second number is obtained by adding a fixed number to the first one. Difference between two consecutive terms is always a constant term.
Note: Alternate method: - We can also solve this question by using formula ${T_n} = 2n - 3$
Now we will find ${T_1}$ term by putting n=1
$ \Rightarrow {T_1} = 2(1) - 3 = - 1$
$\therefore {T_1} = - 1$
Now we will find ${T_2}$ term by putting n=2
$ \Rightarrow {T_2} = 2(2) - 3 = 1$
$\therefore {T_2} = 1$
So, common difference can be find out using formula $d = {T_n} - {T_{n - 1}}$
$ \Rightarrow d = {T_2} - {T_1}$
$ \Rightarrow d = 1 - ( - 1)$ (Putting the values)
$\therefore d = 2$
Therefore common difference is 2
Now we will find $15^{th}$ term by applying formula ${T_n} = a + (n - 1)d$
$ \Rightarrow {T_{15}} = - 1 + (15 - 1)2$ (Putting values of a=1, n=15, d=2)
$ \Rightarrow {T_{15}} = - 1 + (14)2$
$ \Rightarrow {T_{15}} = - 1 + 28$
$\therefore {T_{15}} = 27$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE