 Questions & Answers    Question Answers

# The ${{\text{n}}^{{\text{th}}}}$ term of a geometric progression is ${{\text{a}}_{\text{n}}}$= ${\text{a}}{{\text{r}}^{{\text{n - 1}}}}$, where r representsA. Common differenceB. Common ratioC. First termD. Radius  Answer Verified
Hint: Geometric progression is a sequence in which each term is multiplied by a common factor to obtain the next term.

Complete step-by-step answer:
Given, ${{\text{n}}^{{\text{th}}}}$term of a geometric progression is ${{\text{a}}_{\text{n}}}$, and it is equal to ${\text{a}}{{\text{r}}^{{\text{n - 1}}}}$. We need to find what r represents.

The geometric progression is a progression of numbers with a constant ratio between each number and the one before. If the first term is k and the common ratio is m, then the geometric progression will be k, km, km$^2$, km$^3$,…, km$^{{\text{n - 1}}}$. Here , the nth term is km$^{{\text{n - 1}}}$. Comparing it with ${\text{a}}{{\text{r}}^{{\text{n - 1}}}}$, we get k = a and m = r i.e. a is the first term of the geometric progression and r is the common ratio.
Hence, option (B) is correct.

Note:-We generally have three types of progression. Arithmetic progression, Geometric progression and harmonic progression. The e.g. of geometric progression is 1,3,9,27… .In this example the first term is 1 and the common ratio is 3.
Bookmark added to your notes.
View Notes
Geometric Progression Sum of GP  Arithmetic Progression  Harmonic Progression  Geometric Shapes  Geometry Tools  Geometric Mean  Geometric Distribution  Area of Geometric shapes  Arithmetic Geometric Sequence  Geometric Optics  