
The most general values of x for which \[\sin x + \cos x = {\min _{a \in \mathbb{R}}}\{ 1,{a^2} - 4a + 6\} \] are given by
a. \[2n\pi ;n \in \mathbb{Z}\]
b. \[2n\pi + \dfrac{\pi }{2};n \in \mathbb{Z}\]
c. \[n\pi + {( - 1)^n}.\dfrac{\pi }{4} - \dfrac{\pi }{4};n \in \mathbb{Z}\]
d. \[2n\pi - \dfrac{\pi }{2};n \in \mathbb{Z}\]
Answer
510.6k+ views
Hint: To start with we can use the fact that what is the minimum value of the given polynomial, \[{a^2} - 4a + 6\]. If the value is less than 1, then we can proceed by using that value for \[\sin x + \cos x\] to find the general value for x.
Complete step-by-step answer:
Given \[\sin x + \cos x = {\min _{a \in \mathbb{R}}}\{ 1,{a^2} - 4a + 6\} \]
We have now,
\[{a^2} - 4a + 6\]
On splitting last term, we get
\[ = {a^2} - 4a + 4 + 2\]
Using \[{a^2} - 2ab + {b^2} = {(a - b)^2}\] , we get,
\[ = {(a - 2)^2} + 2\]
So, minimum, \[{a^2} - 4a + 6\]
\[ = {(0)^2} + 2\]
On simplification we get,
\[ = 0 + 2\]\[ = 2\]
So, now, \[\sin x + \cos x = \min (1,{a^2} - 4a + 6)\]
So, the minimum value is, \[\sin x + \cos x = 1\]
Then, \[\sin x + \cos x = 1\]
Multiplying by \[\dfrac{1}{{\sqrt 2 }}\] , we get,
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x = \dfrac{1}{{\sqrt 2 }}\]
Using, \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]and \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] , we get,
\[ \Rightarrow \sin \dfrac{\pi }{4}\sin x + \cos \dfrac{\pi }{4}\cos x = \cos \dfrac{\pi }{4}\]
Now using \[\cos (a - b) = \cos a\cos b + \sin a\sin b\] , we get,
\[ \Rightarrow \cos (x - \dfrac{\pi }{4}) = \cos \dfrac{\pi }{4}\]
Using, \[x = 2n\pi \pm y\] for \[\cos x = \cos y\], we get,
\[ \Rightarrow x - \dfrac{\pi }{4} = 2n\pi \pm \dfrac{\pi }{4}\]
On simplification we get,
\[ \Rightarrow x = 2n\pi \pm \dfrac{\pi }{4} + \dfrac{\pi }{4}\]
Then, \[x = 2n\pi + \dfrac{\pi }{2}\] or \[x = 2n\pi \]
Also, As, \[\sin x + \cos x = 1\]
Multiplying by \[\dfrac{1}{{\sqrt 2 }}\] , we get,
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x = \dfrac{1}{{\sqrt 2 }}\]
Using, \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]and \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\], we get,
\[ \Rightarrow \cos \dfrac{\pi }{4}\sin x + \sin \dfrac{\pi }{4}\cos x = \sin \dfrac{\pi }{4}\]
Using \[\sin (a + b) = \sin a\cos b + \cos a\sin b\] , we get,
\[ \Rightarrow \sin (x + \dfrac{\pi }{4}) = \sin \dfrac{\pi }{4}\]
Using, \[x = n\pi + {( - 1)^n}y\]for \[\sin x = \sin y\]
\[ \Rightarrow x + \dfrac{\pi }{4} = n\pi + {( - 1)^n}\dfrac{\pi }{4}\]
On simplification we get,
\[ \Rightarrow x = n\pi + {( - 1)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4}\] where \[n \in \mathbb{Z}\]
We have the general value as, \[x = n\pi + {( - 1)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4}\] where \[n \in \mathbb{Z}\] which is option c.
Note: We have the general value of \[\sin x = \sin y\]as, \[x = n\pi + {( - 1)^n}y\] and also \[\cos x = \cos y\] as, \[x = 2n\pi \pm y\] . Then we get the values of x as, the value of n goes on starting from, \[n = 1,2,3\],……. And so on.
Complete step-by-step answer:
Given \[\sin x + \cos x = {\min _{a \in \mathbb{R}}}\{ 1,{a^2} - 4a + 6\} \]
We have now,
\[{a^2} - 4a + 6\]
On splitting last term, we get
\[ = {a^2} - 4a + 4 + 2\]
Using \[{a^2} - 2ab + {b^2} = {(a - b)^2}\] , we get,
\[ = {(a - 2)^2} + 2\]
So, minimum, \[{a^2} - 4a + 6\]
\[ = {(0)^2} + 2\]
On simplification we get,
\[ = 0 + 2\]\[ = 2\]
So, now, \[\sin x + \cos x = \min (1,{a^2} - 4a + 6)\]
So, the minimum value is, \[\sin x + \cos x = 1\]
Then, \[\sin x + \cos x = 1\]
Multiplying by \[\dfrac{1}{{\sqrt 2 }}\] , we get,
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x = \dfrac{1}{{\sqrt 2 }}\]
Using, \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]and \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] , we get,
\[ \Rightarrow \sin \dfrac{\pi }{4}\sin x + \cos \dfrac{\pi }{4}\cos x = \cos \dfrac{\pi }{4}\]
Now using \[\cos (a - b) = \cos a\cos b + \sin a\sin b\] , we get,
\[ \Rightarrow \cos (x - \dfrac{\pi }{4}) = \cos \dfrac{\pi }{4}\]
Using, \[x = 2n\pi \pm y\] for \[\cos x = \cos y\], we get,
\[ \Rightarrow x - \dfrac{\pi }{4} = 2n\pi \pm \dfrac{\pi }{4}\]
On simplification we get,
\[ \Rightarrow x = 2n\pi \pm \dfrac{\pi }{4} + \dfrac{\pi }{4}\]
Then, \[x = 2n\pi + \dfrac{\pi }{2}\] or \[x = 2n\pi \]
Also, As, \[\sin x + \cos x = 1\]
Multiplying by \[\dfrac{1}{{\sqrt 2 }}\] , we get,
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x = \dfrac{1}{{\sqrt 2 }}\]
Using, \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]and \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\], we get,
\[ \Rightarrow \cos \dfrac{\pi }{4}\sin x + \sin \dfrac{\pi }{4}\cos x = \sin \dfrac{\pi }{4}\]
Using \[\sin (a + b) = \sin a\cos b + \cos a\sin b\] , we get,
\[ \Rightarrow \sin (x + \dfrac{\pi }{4}) = \sin \dfrac{\pi }{4}\]
Using, \[x = n\pi + {( - 1)^n}y\]for \[\sin x = \sin y\]
\[ \Rightarrow x + \dfrac{\pi }{4} = n\pi + {( - 1)^n}\dfrac{\pi }{4}\]
On simplification we get,
\[ \Rightarrow x = n\pi + {( - 1)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4}\] where \[n \in \mathbb{Z}\]
We have the general value as, \[x = n\pi + {( - 1)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4}\] where \[n \in \mathbb{Z}\] which is option c.
Note: We have the general value of \[\sin x = \sin y\]as, \[x = n\pi + {( - 1)^n}y\] and also \[\cos x = \cos y\] as, \[x = 2n\pi \pm y\] . Then we get the values of x as, the value of n goes on starting from, \[n = 1,2,3\],……. And so on.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Why is insulin not administered orally to a diabetic class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Define Vant Hoff factor How is it related to the degree class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

The current flowing through the resistor in a series class 12 physics CBSE

Name the part of the flower which the tassels of the class 12 biology CBSE
