
The most general values of x for which \[\sin x + \cos x = {\min _{a \in \mathbb{R}}}\{ 1,{a^2} - 4a + 6\} \] are given by
a. \[2n\pi ;n \in \mathbb{Z}\]
b. \[2n\pi + \dfrac{\pi }{2};n \in \mathbb{Z}\]
c. \[n\pi + {( - 1)^n}.\dfrac{\pi }{4} - \dfrac{\pi }{4};n \in \mathbb{Z}\]
d. \[2n\pi - \dfrac{\pi }{2};n \in \mathbb{Z}\]
Answer
573.9k+ views
Hint: To start with we can use the fact that what is the minimum value of the given polynomial, \[{a^2} - 4a + 6\]. If the value is less than 1, then we can proceed by using that value for \[\sin x + \cos x\] to find the general value for x.
Complete step-by-step answer:
Given \[\sin x + \cos x = {\min _{a \in \mathbb{R}}}\{ 1,{a^2} - 4a + 6\} \]
We have now,
\[{a^2} - 4a + 6\]
On splitting last term, we get
\[ = {a^2} - 4a + 4 + 2\]
Using \[{a^2} - 2ab + {b^2} = {(a - b)^2}\] , we get,
\[ = {(a - 2)^2} + 2\]
So, minimum, \[{a^2} - 4a + 6\]
\[ = {(0)^2} + 2\]
On simplification we get,
\[ = 0 + 2\]\[ = 2\]
So, now, \[\sin x + \cos x = \min (1,{a^2} - 4a + 6)\]
So, the minimum value is, \[\sin x + \cos x = 1\]
Then, \[\sin x + \cos x = 1\]
Multiplying by \[\dfrac{1}{{\sqrt 2 }}\] , we get,
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x = \dfrac{1}{{\sqrt 2 }}\]
Using, \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]and \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] , we get,
\[ \Rightarrow \sin \dfrac{\pi }{4}\sin x + \cos \dfrac{\pi }{4}\cos x = \cos \dfrac{\pi }{4}\]
Now using \[\cos (a - b) = \cos a\cos b + \sin a\sin b\] , we get,
\[ \Rightarrow \cos (x - \dfrac{\pi }{4}) = \cos \dfrac{\pi }{4}\]
Using, \[x = 2n\pi \pm y\] for \[\cos x = \cos y\], we get,
\[ \Rightarrow x - \dfrac{\pi }{4} = 2n\pi \pm \dfrac{\pi }{4}\]
On simplification we get,
\[ \Rightarrow x = 2n\pi \pm \dfrac{\pi }{4} + \dfrac{\pi }{4}\]
Then, \[x = 2n\pi + \dfrac{\pi }{2}\] or \[x = 2n\pi \]
Also, As, \[\sin x + \cos x = 1\]
Multiplying by \[\dfrac{1}{{\sqrt 2 }}\] , we get,
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x = \dfrac{1}{{\sqrt 2 }}\]
Using, \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]and \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\], we get,
\[ \Rightarrow \cos \dfrac{\pi }{4}\sin x + \sin \dfrac{\pi }{4}\cos x = \sin \dfrac{\pi }{4}\]
Using \[\sin (a + b) = \sin a\cos b + \cos a\sin b\] , we get,
\[ \Rightarrow \sin (x + \dfrac{\pi }{4}) = \sin \dfrac{\pi }{4}\]
Using, \[x = n\pi + {( - 1)^n}y\]for \[\sin x = \sin y\]
\[ \Rightarrow x + \dfrac{\pi }{4} = n\pi + {( - 1)^n}\dfrac{\pi }{4}\]
On simplification we get,
\[ \Rightarrow x = n\pi + {( - 1)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4}\] where \[n \in \mathbb{Z}\]
We have the general value as, \[x = n\pi + {( - 1)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4}\] where \[n \in \mathbb{Z}\] which is option c.
Note: We have the general value of \[\sin x = \sin y\]as, \[x = n\pi + {( - 1)^n}y\] and also \[\cos x = \cos y\] as, \[x = 2n\pi \pm y\] . Then we get the values of x as, the value of n goes on starting from, \[n = 1,2,3\],……. And so on.
Complete step-by-step answer:
Given \[\sin x + \cos x = {\min _{a \in \mathbb{R}}}\{ 1,{a^2} - 4a + 6\} \]
We have now,
\[{a^2} - 4a + 6\]
On splitting last term, we get
\[ = {a^2} - 4a + 4 + 2\]
Using \[{a^2} - 2ab + {b^2} = {(a - b)^2}\] , we get,
\[ = {(a - 2)^2} + 2\]
So, minimum, \[{a^2} - 4a + 6\]
\[ = {(0)^2} + 2\]
On simplification we get,
\[ = 0 + 2\]\[ = 2\]
So, now, \[\sin x + \cos x = \min (1,{a^2} - 4a + 6)\]
So, the minimum value is, \[\sin x + \cos x = 1\]
Then, \[\sin x + \cos x = 1\]
Multiplying by \[\dfrac{1}{{\sqrt 2 }}\] , we get,
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x = \dfrac{1}{{\sqrt 2 }}\]
Using, \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]and \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] , we get,
\[ \Rightarrow \sin \dfrac{\pi }{4}\sin x + \cos \dfrac{\pi }{4}\cos x = \cos \dfrac{\pi }{4}\]
Now using \[\cos (a - b) = \cos a\cos b + \sin a\sin b\] , we get,
\[ \Rightarrow \cos (x - \dfrac{\pi }{4}) = \cos \dfrac{\pi }{4}\]
Using, \[x = 2n\pi \pm y\] for \[\cos x = \cos y\], we get,
\[ \Rightarrow x - \dfrac{\pi }{4} = 2n\pi \pm \dfrac{\pi }{4}\]
On simplification we get,
\[ \Rightarrow x = 2n\pi \pm \dfrac{\pi }{4} + \dfrac{\pi }{4}\]
Then, \[x = 2n\pi + \dfrac{\pi }{2}\] or \[x = 2n\pi \]
Also, As, \[\sin x + \cos x = 1\]
Multiplying by \[\dfrac{1}{{\sqrt 2 }}\] , we get,
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x = \dfrac{1}{{\sqrt 2 }}\]
Using, \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]and \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\], we get,
\[ \Rightarrow \cos \dfrac{\pi }{4}\sin x + \sin \dfrac{\pi }{4}\cos x = \sin \dfrac{\pi }{4}\]
Using \[\sin (a + b) = \sin a\cos b + \cos a\sin b\] , we get,
\[ \Rightarrow \sin (x + \dfrac{\pi }{4}) = \sin \dfrac{\pi }{4}\]
Using, \[x = n\pi + {( - 1)^n}y\]for \[\sin x = \sin y\]
\[ \Rightarrow x + \dfrac{\pi }{4} = n\pi + {( - 1)^n}\dfrac{\pi }{4}\]
On simplification we get,
\[ \Rightarrow x = n\pi + {( - 1)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4}\] where \[n \in \mathbb{Z}\]
We have the general value as, \[x = n\pi + {( - 1)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4}\] where \[n \in \mathbb{Z}\] which is option c.
Note: We have the general value of \[\sin x = \sin y\]as, \[x = n\pi + {( - 1)^n}y\] and also \[\cos x = \cos y\] as, \[x = 2n\pi \pm y\] . Then we get the values of x as, the value of n goes on starting from, \[n = 1,2,3\],……. And so on.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

