Answer
Verified
457.8k+ views
Hint: Differentiating the equation ${{\text{a}}^{\text{2}}}{\text{ - 6a + 11}}$ and finding the minimum values of a gives us the minimum value of $(1,\,{{\text{a}}^2} - 6{\text{a}} + 11)$ using sin(A-B) formula, we can get the general values of $\theta $.
Complete step by step solution: For the $\,\mathop {\min }\limits_{{\text{a}} \in {\text{R}}} \,(1,\,{{\text{a}}^2}\, - \,6{\text{a}}\,{\text{ + }}\,{\text{11)}}$
Let ${\text{f}}({\text{a}})\, = \,{{\text{a}}^2} - 6{\text{a}} + 11$
${{\text{f}}^1}{\text{(a)}}\,{\text{ = }}\,{\text{2a - 6}}$
For minimum ${{\text{f}}^1}{\text{(a)}}\,{\text{ = }}\,{\text{0}}$
\[\begin{gathered}
\Rightarrow \,2{\text{a - 6}}\,{\text{ = }}\,{\text{0}} \\
\Rightarrow \,{\text{a}}\,{\text{ = }}\,{\text{3}} \\
\end{gathered} \]
At ${\text{a}}\,{\text{ = }}\,{\text{3}}$ we get minimum for f(a)
$\therefore \,{\text{f}}(3)\, = \,9 - 18 + 11\, = \,2$
Then among {1,2} minimum is|
So $\sin \,\theta - \cos \,\theta \, = \,1$
Let us divide both the sides by $\sqrt 2 $.
(Because $\sin \,{45^ \circ }\, = \,\cos \,{45^ \circ }\, = \,\dfrac{1}{{\sqrt 2 }}$ )
\[ \Rightarrow \,\dfrac{{\sin \theta }}{{\sqrt 2 }} - \dfrac{{\cos \,\theta }}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}\]
We know $\sin \,({\text{A}} - {\text{B}})\, = \,\sin \,{\text{A cos B - cos A sin B}}$.
Hence \[\begin{gathered}
{\text{A}}\, \to \,{\text{0}} \\
{\text{B}}\, \to \,\dfrac{\pi }{4} \\
\end{gathered} \]
Then we get
\[\sin \,\left( {\theta - \dfrac{\pi }{4}} \right)\, = \,f1\dfrac{1}{{\sqrt 2 }}\, = \,\sin \,\left( {\dfrac{\pi }{4}} \right)\]
For general solution
When
$\begin{gathered}
\sin \,{\theta ^{’}}\, = \,\sin \,{\text{x}} \\
{\theta ^{’}}\, = \,{\text{n}}\pi {\text{ + ( - 1}}{{\text{)}}^n}{\text{x for n}} \in \,{\text{z}} \\
{\text{Here }}{\theta ^{’}}\, = \,\theta - \dfrac{\pi }{4} \\
{\text{and x = }}\dfrac{\pi }{4} \\
\Rightarrow \,\left( {\theta - \dfrac{\pi }{4}} \right)\, = \,n\pi \, + \,{( - 1)^n}\dfrac{\pi }{4} \\
\Rightarrow \,\theta = \,n\pi \, + \,{( - 1)^n}\dfrac{\pi }{4} \\
\end{gathered}$
Note: For a quadratic equation whenever the highest degree coefficient is positive there is always a global minima .$\sin \theta - \cos \theta = 1$; This equation can also be solved by squaring on both the sides and using the property
${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step by step solution: For the $\,\mathop {\min }\limits_{{\text{a}} \in {\text{R}}} \,(1,\,{{\text{a}}^2}\, - \,6{\text{a}}\,{\text{ + }}\,{\text{11)}}$
Let ${\text{f}}({\text{a}})\, = \,{{\text{a}}^2} - 6{\text{a}} + 11$
${{\text{f}}^1}{\text{(a)}}\,{\text{ = }}\,{\text{2a - 6}}$
For minimum ${{\text{f}}^1}{\text{(a)}}\,{\text{ = }}\,{\text{0}}$
\[\begin{gathered}
\Rightarrow \,2{\text{a - 6}}\,{\text{ = }}\,{\text{0}} \\
\Rightarrow \,{\text{a}}\,{\text{ = }}\,{\text{3}} \\
\end{gathered} \]
At ${\text{a}}\,{\text{ = }}\,{\text{3}}$ we get minimum for f(a)
$\therefore \,{\text{f}}(3)\, = \,9 - 18 + 11\, = \,2$
Then among {1,2} minimum is|
So $\sin \,\theta - \cos \,\theta \, = \,1$
Let us divide both the sides by $\sqrt 2 $.
(Because $\sin \,{45^ \circ }\, = \,\cos \,{45^ \circ }\, = \,\dfrac{1}{{\sqrt 2 }}$ )
\[ \Rightarrow \,\dfrac{{\sin \theta }}{{\sqrt 2 }} - \dfrac{{\cos \,\theta }}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}\]
We know $\sin \,({\text{A}} - {\text{B}})\, = \,\sin \,{\text{A cos B - cos A sin B}}$.
Hence \[\begin{gathered}
{\text{A}}\, \to \,{\text{0}} \\
{\text{B}}\, \to \,\dfrac{\pi }{4} \\
\end{gathered} \]
Then we get
\[\sin \,\left( {\theta - \dfrac{\pi }{4}} \right)\, = \,f1\dfrac{1}{{\sqrt 2 }}\, = \,\sin \,\left( {\dfrac{\pi }{4}} \right)\]
For general solution
When
$\begin{gathered}
\sin \,{\theta ^{’}}\, = \,\sin \,{\text{x}} \\
{\theta ^{’}}\, = \,{\text{n}}\pi {\text{ + ( - 1}}{{\text{)}}^n}{\text{x for n}} \in \,{\text{z}} \\
{\text{Here }}{\theta ^{’}}\, = \,\theta - \dfrac{\pi }{4} \\
{\text{and x = }}\dfrac{\pi }{4} \\
\Rightarrow \,\left( {\theta - \dfrac{\pi }{4}} \right)\, = \,n\pi \, + \,{( - 1)^n}\dfrac{\pi }{4} \\
\Rightarrow \,\theta = \,n\pi \, + \,{( - 1)^n}\dfrac{\pi }{4} \\
\end{gathered}$
Note: For a quadratic equation whenever the highest degree coefficient is positive there is always a global minima .$\sin \theta - \cos \theta = 1$; This equation can also be solved by squaring on both the sides and using the property
${\sin ^2}\theta + {\cos ^2}\theta = 1$
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE