
The most general values of $\theta $ for which $\sin \theta - \cos \,\theta \, = \,\mathop {\min }\limits_{{\text{a}} \in {\text{R}}} \,(1,\,{{\text{a}}^2}\, - \,6{\text{a}}\,{\text{ + }}\,{\text{11)}}$ are given by
A) \[{\text{n}}\pi \,{\text{ + }}\,{{\text{( - 1)}}^n}\dfrac{\pi }{4} - \dfrac{\pi }{4},\, \& \,{\text{n}}\, \in \,z\,\]
B) \[{\text{n}}\pi \,{\text{ + }}\,{{\text{( - 1)}}^n}\dfrac{\pi }{4} + \dfrac{\pi }{4},\, \&\, {\text{n}}\, \in \,z\,\]
C) \[2{\text{n}}\pi \, + \,\dfrac{\pi }{2}\, \& ,\,{\text{n}} \in {\text{z}}\]
D) \[{\text{n}}\pi \, + \,\dfrac{\pi }{2}\, \& ,\,{\text{n}} \in {\text{z}}\]
Answer
495.9k+ views
Hint: Differentiating the equation ${{\text{a}}^{\text{2}}}{\text{ - 6a + 11}}$ and finding the minimum values of a gives us the minimum value of $(1,\,{{\text{a}}^2} - 6{\text{a}} + 11)$ using sin(A-B) formula, we can get the general values of $\theta $.
Complete step by step solution: For the $\,\mathop {\min }\limits_{{\text{a}} \in {\text{R}}} \,(1,\,{{\text{a}}^2}\, - \,6{\text{a}}\,{\text{ + }}\,{\text{11)}}$
Let ${\text{f}}({\text{a}})\, = \,{{\text{a}}^2} - 6{\text{a}} + 11$
${{\text{f}}^1}{\text{(a)}}\,{\text{ = }}\,{\text{2a - 6}}$
For minimum ${{\text{f}}^1}{\text{(a)}}\,{\text{ = }}\,{\text{0}}$
\[\begin{gathered}
\Rightarrow \,2{\text{a - 6}}\,{\text{ = }}\,{\text{0}} \\
\Rightarrow \,{\text{a}}\,{\text{ = }}\,{\text{3}} \\
\end{gathered} \]
At ${\text{a}}\,{\text{ = }}\,{\text{3}}$ we get minimum for f(a)
$\therefore \,{\text{f}}(3)\, = \,9 - 18 + 11\, = \,2$
Then among {1,2} minimum is|
So $\sin \,\theta - \cos \,\theta \, = \,1$
Let us divide both the sides by $\sqrt 2 $.
(Because $\sin \,{45^ \circ }\, = \,\cos \,{45^ \circ }\, = \,\dfrac{1}{{\sqrt 2 }}$ )
\[ \Rightarrow \,\dfrac{{\sin \theta }}{{\sqrt 2 }} - \dfrac{{\cos \,\theta }}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}\]
We know $\sin \,({\text{A}} - {\text{B}})\, = \,\sin \,{\text{A cos B - cos A sin B}}$.
Hence \[\begin{gathered}
{\text{A}}\, \to \,{\text{0}} \\
{\text{B}}\, \to \,\dfrac{\pi }{4} \\
\end{gathered} \]
Then we get
\[\sin \,\left( {\theta - \dfrac{\pi }{4}} \right)\, = \,f1\dfrac{1}{{\sqrt 2 }}\, = \,\sin \,\left( {\dfrac{\pi }{4}} \right)\]
For general solution
When
$\begin{gathered}
\sin \,{\theta ^{’}}\, = \,\sin \,{\text{x}} \\
{\theta ^{’}}\, = \,{\text{n}}\pi {\text{ + ( - 1}}{{\text{)}}^n}{\text{x for n}} \in \,{\text{z}} \\
{\text{Here }}{\theta ^{’}}\, = \,\theta - \dfrac{\pi }{4} \\
{\text{and x = }}\dfrac{\pi }{4} \\
\Rightarrow \,\left( {\theta - \dfrac{\pi }{4}} \right)\, = \,n\pi \, + \,{( - 1)^n}\dfrac{\pi }{4} \\
\Rightarrow \,\theta = \,n\pi \, + \,{( - 1)^n}\dfrac{\pi }{4} \\
\end{gathered}$
Note: For a quadratic equation whenever the highest degree coefficient is positive there is always a global minima .$\sin \theta - \cos \theta = 1$; This equation can also be solved by squaring on both the sides and using the property
${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step by step solution: For the $\,\mathop {\min }\limits_{{\text{a}} \in {\text{R}}} \,(1,\,{{\text{a}}^2}\, - \,6{\text{a}}\,{\text{ + }}\,{\text{11)}}$
Let ${\text{f}}({\text{a}})\, = \,{{\text{a}}^2} - 6{\text{a}} + 11$
${{\text{f}}^1}{\text{(a)}}\,{\text{ = }}\,{\text{2a - 6}}$
For minimum ${{\text{f}}^1}{\text{(a)}}\,{\text{ = }}\,{\text{0}}$
\[\begin{gathered}
\Rightarrow \,2{\text{a - 6}}\,{\text{ = }}\,{\text{0}} \\
\Rightarrow \,{\text{a}}\,{\text{ = }}\,{\text{3}} \\
\end{gathered} \]
At ${\text{a}}\,{\text{ = }}\,{\text{3}}$ we get minimum for f(a)
$\therefore \,{\text{f}}(3)\, = \,9 - 18 + 11\, = \,2$
Then among {1,2} minimum is|
So $\sin \,\theta - \cos \,\theta \, = \,1$
Let us divide both the sides by $\sqrt 2 $.
(Because $\sin \,{45^ \circ }\, = \,\cos \,{45^ \circ }\, = \,\dfrac{1}{{\sqrt 2 }}$ )
\[ \Rightarrow \,\dfrac{{\sin \theta }}{{\sqrt 2 }} - \dfrac{{\cos \,\theta }}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}\]
We know $\sin \,({\text{A}} - {\text{B}})\, = \,\sin \,{\text{A cos B - cos A sin B}}$.
Hence \[\begin{gathered}
{\text{A}}\, \to \,{\text{0}} \\
{\text{B}}\, \to \,\dfrac{\pi }{4} \\
\end{gathered} \]
Then we get
\[\sin \,\left( {\theta - \dfrac{\pi }{4}} \right)\, = \,f1\dfrac{1}{{\sqrt 2 }}\, = \,\sin \,\left( {\dfrac{\pi }{4}} \right)\]
For general solution
When
$\begin{gathered}
\sin \,{\theta ^{’}}\, = \,\sin \,{\text{x}} \\
{\theta ^{’}}\, = \,{\text{n}}\pi {\text{ + ( - 1}}{{\text{)}}^n}{\text{x for n}} \in \,{\text{z}} \\
{\text{Here }}{\theta ^{’}}\, = \,\theta - \dfrac{\pi }{4} \\
{\text{and x = }}\dfrac{\pi }{4} \\
\Rightarrow \,\left( {\theta - \dfrac{\pi }{4}} \right)\, = \,n\pi \, + \,{( - 1)^n}\dfrac{\pi }{4} \\
\Rightarrow \,\theta = \,n\pi \, + \,{( - 1)^n}\dfrac{\pi }{4} \\
\end{gathered}$
Note: For a quadratic equation whenever the highest degree coefficient is positive there is always a global minima .$\sin \theta - \cos \theta = 1$; This equation can also be solved by squaring on both the sides and using the property
${\sin ^2}\theta + {\cos ^2}\theta = 1$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE
