
The most general values of $\theta $ for which $\sin \theta - \cos \,\theta \, = \,\mathop {\min }\limits_{{\text{a}} \in {\text{R}}} \,(1,\,{{\text{a}}^2}\, - \,6{\text{a}}\,{\text{ + }}\,{\text{11)}}$ are given by
A) \[{\text{n}}\pi \,{\text{ + }}\,{{\text{( - 1)}}^n}\dfrac{\pi }{4} - \dfrac{\pi }{4},\, \& \,{\text{n}}\, \in \,z\,\]
B) \[{\text{n}}\pi \,{\text{ + }}\,{{\text{( - 1)}}^n}\dfrac{\pi }{4} + \dfrac{\pi }{4},\, \&\, {\text{n}}\, \in \,z\,\]
C) \[2{\text{n}}\pi \, + \,\dfrac{\pi }{2}\, \& ,\,{\text{n}} \in {\text{z}}\]
D) \[{\text{n}}\pi \, + \,\dfrac{\pi }{2}\, \& ,\,{\text{n}} \in {\text{z}}\]
Answer
577.5k+ views
Hint: Differentiating the equation ${{\text{a}}^{\text{2}}}{\text{ - 6a + 11}}$ and finding the minimum values of a gives us the minimum value of $(1,\,{{\text{a}}^2} - 6{\text{a}} + 11)$ using sin(A-B) formula, we can get the general values of $\theta $.
Complete step by step solution: For the $\,\mathop {\min }\limits_{{\text{a}} \in {\text{R}}} \,(1,\,{{\text{a}}^2}\, - \,6{\text{a}}\,{\text{ + }}\,{\text{11)}}$
Let ${\text{f}}({\text{a}})\, = \,{{\text{a}}^2} - 6{\text{a}} + 11$
${{\text{f}}^1}{\text{(a)}}\,{\text{ = }}\,{\text{2a - 6}}$
For minimum ${{\text{f}}^1}{\text{(a)}}\,{\text{ = }}\,{\text{0}}$
\[\begin{gathered}
\Rightarrow \,2{\text{a - 6}}\,{\text{ = }}\,{\text{0}} \\
\Rightarrow \,{\text{a}}\,{\text{ = }}\,{\text{3}} \\
\end{gathered} \]
At ${\text{a}}\,{\text{ = }}\,{\text{3}}$ we get minimum for f(a)
$\therefore \,{\text{f}}(3)\, = \,9 - 18 + 11\, = \,2$
Then among {1,2} minimum is|
So $\sin \,\theta - \cos \,\theta \, = \,1$
Let us divide both the sides by $\sqrt 2 $.
(Because $\sin \,{45^ \circ }\, = \,\cos \,{45^ \circ }\, = \,\dfrac{1}{{\sqrt 2 }}$ )
\[ \Rightarrow \,\dfrac{{\sin \theta }}{{\sqrt 2 }} - \dfrac{{\cos \,\theta }}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}\]
We know $\sin \,({\text{A}} - {\text{B}})\, = \,\sin \,{\text{A cos B - cos A sin B}}$.
Hence \[\begin{gathered}
{\text{A}}\, \to \,{\text{0}} \\
{\text{B}}\, \to \,\dfrac{\pi }{4} \\
\end{gathered} \]
Then we get
\[\sin \,\left( {\theta - \dfrac{\pi }{4}} \right)\, = \,f1\dfrac{1}{{\sqrt 2 }}\, = \,\sin \,\left( {\dfrac{\pi }{4}} \right)\]
For general solution
When
$\begin{gathered}
\sin \,{\theta ^{’}}\, = \,\sin \,{\text{x}} \\
{\theta ^{’}}\, = \,{\text{n}}\pi {\text{ + ( - 1}}{{\text{)}}^n}{\text{x for n}} \in \,{\text{z}} \\
{\text{Here }}{\theta ^{’}}\, = \,\theta - \dfrac{\pi }{4} \\
{\text{and x = }}\dfrac{\pi }{4} \\
\Rightarrow \,\left( {\theta - \dfrac{\pi }{4}} \right)\, = \,n\pi \, + \,{( - 1)^n}\dfrac{\pi }{4} \\
\Rightarrow \,\theta = \,n\pi \, + \,{( - 1)^n}\dfrac{\pi }{4} \\
\end{gathered}$
Note: For a quadratic equation whenever the highest degree coefficient is positive there is always a global minima .$\sin \theta - \cos \theta = 1$; This equation can also be solved by squaring on both the sides and using the property
${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step by step solution: For the $\,\mathop {\min }\limits_{{\text{a}} \in {\text{R}}} \,(1,\,{{\text{a}}^2}\, - \,6{\text{a}}\,{\text{ + }}\,{\text{11)}}$
Let ${\text{f}}({\text{a}})\, = \,{{\text{a}}^2} - 6{\text{a}} + 11$
${{\text{f}}^1}{\text{(a)}}\,{\text{ = }}\,{\text{2a - 6}}$
For minimum ${{\text{f}}^1}{\text{(a)}}\,{\text{ = }}\,{\text{0}}$
\[\begin{gathered}
\Rightarrow \,2{\text{a - 6}}\,{\text{ = }}\,{\text{0}} \\
\Rightarrow \,{\text{a}}\,{\text{ = }}\,{\text{3}} \\
\end{gathered} \]
At ${\text{a}}\,{\text{ = }}\,{\text{3}}$ we get minimum for f(a)
$\therefore \,{\text{f}}(3)\, = \,9 - 18 + 11\, = \,2$
Then among {1,2} minimum is|
So $\sin \,\theta - \cos \,\theta \, = \,1$
Let us divide both the sides by $\sqrt 2 $.
(Because $\sin \,{45^ \circ }\, = \,\cos \,{45^ \circ }\, = \,\dfrac{1}{{\sqrt 2 }}$ )
\[ \Rightarrow \,\dfrac{{\sin \theta }}{{\sqrt 2 }} - \dfrac{{\cos \,\theta }}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}\]
We know $\sin \,({\text{A}} - {\text{B}})\, = \,\sin \,{\text{A cos B - cos A sin B}}$.
Hence \[\begin{gathered}
{\text{A}}\, \to \,{\text{0}} \\
{\text{B}}\, \to \,\dfrac{\pi }{4} \\
\end{gathered} \]
Then we get
\[\sin \,\left( {\theta - \dfrac{\pi }{4}} \right)\, = \,f1\dfrac{1}{{\sqrt 2 }}\, = \,\sin \,\left( {\dfrac{\pi }{4}} \right)\]
For general solution
When
$\begin{gathered}
\sin \,{\theta ^{’}}\, = \,\sin \,{\text{x}} \\
{\theta ^{’}}\, = \,{\text{n}}\pi {\text{ + ( - 1}}{{\text{)}}^n}{\text{x for n}} \in \,{\text{z}} \\
{\text{Here }}{\theta ^{’}}\, = \,\theta - \dfrac{\pi }{4} \\
{\text{and x = }}\dfrac{\pi }{4} \\
\Rightarrow \,\left( {\theta - \dfrac{\pi }{4}} \right)\, = \,n\pi \, + \,{( - 1)^n}\dfrac{\pi }{4} \\
\Rightarrow \,\theta = \,n\pi \, + \,{( - 1)^n}\dfrac{\pi }{4} \\
\end{gathered}$
Note: For a quadratic equation whenever the highest degree coefficient is positive there is always a global minima .$\sin \theta - \cos \theta = 1$; This equation can also be solved by squaring on both the sides and using the property
${\sin ^2}\theta + {\cos ^2}\theta = 1$
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

