Answer
Verified
456k+ views
Hint: To find the moment of inertia of any shape about an unknown axis, first we need to know the moment of inertia of the shape about an axis either perpendicular to it or parallel to it. If we know the moment of inertia of a shape about an axis passing through the centre of mass of the body, then we can find the moment of inertia about any axis parallel to it by the use of parallel axis theorem.
Formula used:
${ I }_{ axis }={ I }_{ com }\ +\ Md^{ 2 }$ [ Statement of parallel axis theorem ]
Complete step-by-step answer:
Since every diameter of a sphere passes through its centre of mass, hence the moment of inertia of a sphere about its diameter is also the moment of inertia about its centre of mass. Now, to find the moment of inertia about its tangent, the distance between diameter and a tangent equals ‘R’.
Given, $I_{com} = \dfrac25 MR^2$and $d= R$, as we know, the moment of inertia of the solid sphere about its axis passing through its centre of mass is $\dfrac{2}{5}MR^2$.
Now using parallel axis theorem:
$I_{axis} = I + MR^2$ ------ 1.
Hence $I$=$\dfrac{2}{5}MR^2$
$I_{axis} = \dfrac25 MR^2 + MR^2 = \dfrac 75 MR^2$,
So, the correct answer is “Option B”.
Note: While using the parallel axis theorem, one axis should always be the one passing through the centre of mass. Chance of mistakes is high if one avoids this information. Students are advised to learn the moment of inertia of commonly used shapes for example: Disc, sphere, etc. $\dfrac25MR^2$is the moment of inertia of a solid sphere about an axis passing through its centre of mass. One must not get confused with solid and hollow bodies either. The moment of inertia of a hollow sphere along an axis passing through its COM is $\dfrac 23MR^2$.
Formula used:
${ I }_{ axis }={ I }_{ com }\ +\ Md^{ 2 }$ [ Statement of parallel axis theorem ]
Complete step-by-step answer:
Since every diameter of a sphere passes through its centre of mass, hence the moment of inertia of a sphere about its diameter is also the moment of inertia about its centre of mass. Now, to find the moment of inertia about its tangent, the distance between diameter and a tangent equals ‘R’.
Given, $I_{com} = \dfrac25 MR^2$and $d= R$, as we know, the moment of inertia of the solid sphere about its axis passing through its centre of mass is $\dfrac{2}{5}MR^2$.
Now using parallel axis theorem:
$I_{axis} = I + MR^2$ ------ 1.
Hence $I$=$\dfrac{2}{5}MR^2$
$I_{axis} = \dfrac25 MR^2 + MR^2 = \dfrac 75 MR^2$,
So, the correct answer is “Option B”.
Note: While using the parallel axis theorem, one axis should always be the one passing through the centre of mass. Chance of mistakes is high if one avoids this information. Students are advised to learn the moment of inertia of commonly used shapes for example: Disc, sphere, etc. $\dfrac25MR^2$is the moment of inertia of a solid sphere about an axis passing through its centre of mass. One must not get confused with solid and hollow bodies either. The moment of inertia of a hollow sphere along an axis passing through its COM is $\dfrac 23MR^2$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE