
The molar solubility of\[Cd{{\left( OH \right)}_{2}}\]is $1.84\times {{10}^{-5}}M$in water. The expected solubility of \[Cd{{\left( OH \right)}_{2}}\]in a buffer solution of pH = 12 is:
A. $6.23\times {{10}^{-11}}M$
B. $1.84\times {{10}^{-9}}M$
C. $\dfrac{2.49}{1.84}\times {{10}^{-9}}M$
D. $2.49\times {{10}^{-10}}M$
Answer
584.7k+ views
Hint: The solubility product in water as well as buffer solution will be the same. So, by comparing we can find the solubility in buffer solution. Solubility is a property which refers to the ability to dissolve in a solvent for a given substance, the solute. A buffer solution is an aqueous solution composed of a weak acid mixture with its conjugate base, or vice versa. Its pH changes very little when it's added a small amount of strong acid or base.
Complete answer:
- First let’s see what a solubility product is. We know that when a slightly soluble ionic compound is added to water, some of it dissolves to form a solution, establishing an equilibrium between the pure solid and a solution of its ions.
- The equilibrium constant for the dissolution of such sparingly soluble salts is known as Solubility product ${{K}_{sp}}$.
- The chemical equation of \[Cd{{\left( OH \right)}_{2}}\]in water will be:
\[Cd{{\left( OH \right)}_{2}}\rightleftharpoons C{{d}^{+2}}+2O{{H}^{-}}\]
Solubility: S S 2S
- The equilibrium constant for this solution will be written as:
\[K=\dfrac{\left[ C{{d}^{+2}} \right]{{\left[ O{{H}^{-}} \right]}^{2}}}{\left[ Cd{{\left( OH \right)}_{2}} \right]}\]
Therefore, $\left[ Cd{{\left( OH \right)}_{2}} \right]K={{K}_{sp}}=\left[ C{{d}^{+2}} \right]{{\left[ O{{H}^{-}} \right]}^{2}}$
- So, ${{K}_{sp}}$ = $S\times {{(2S)}^{2}}=4{{S}^{3}}$
Here the power 2 is the stoichiometric constant of $O{{H}^{-}}$ions.
- In the question value of solubility is given as $1.84\times {{10}^{-5}}M$, putting this value of S we get:
${{K}_{sp}}$ = $4\times {{(1.84\times {{10}^{-5}})}^{3}}=2.49\times {{10}^{-14}}$
- Now the pH of the given buffer solution is pH = 12
- Therefore, the pOH will be, pOH = 2
-Through this we can calculate the concentration of $O{{H}^{-}}$ions.
-log[$O{{H}^{-}}$] = 2
[$O{{H}^{-}}$] = 10-2
- Now, let’s see the equation again
\[Cd{{\left( OH \right)}_{2}}\rightleftharpoons C{{d}^{+2}}+2O{{H}^{-}}\]
S ${{10}^{-2}}$
Now, the ${{K}_{sp}}$ will be
${{K}_{sp}}$ = $S\times {{({{10}^{-2}})}^{2}}$
We already calculated the value earlier ${{K}_{sp}}$ = $2.49\times {{10}^{-14}}$
Now put this value and after solving the equation we get
$2.49\times {{10}^{-14}}$= $S\times {{({{10}^{-2}})}^{2}}$
Therefore, S = $2.49\times {{10}^{-10}}M$
So, the expected solubility of \[Cd{{\left( OH \right)}_{2}}\] in a buffer solution of pH = 12 is option D. $2.49\times {{10}^{-10}}M$
Note: Remember that solubility is usually expressed in terms of mass of solute per 100mL of solvent, whereas ${{K}_{sp}}$ is defined in terms of the molar concentrations of the component ions.
While calculating the product of solubility of the ions is raised to the power of their stoichiometric constant. For example:
$\left[ Cd{{\left( OH \right)}_{2}} \right]K={{K}_{sp}}=\left[ C{{d}^{+2}} \right]{{\left[ O{{H}^{-}} \right]}^{2}}$,
The power 2 is the stoichiometric constant of the $O{{H}^{-}}$ions.
Complete answer:
- First let’s see what a solubility product is. We know that when a slightly soluble ionic compound is added to water, some of it dissolves to form a solution, establishing an equilibrium between the pure solid and a solution of its ions.
- The equilibrium constant for the dissolution of such sparingly soluble salts is known as Solubility product ${{K}_{sp}}$.
- The chemical equation of \[Cd{{\left( OH \right)}_{2}}\]in water will be:
\[Cd{{\left( OH \right)}_{2}}\rightleftharpoons C{{d}^{+2}}+2O{{H}^{-}}\]
Solubility: S S 2S
- The equilibrium constant for this solution will be written as:
\[K=\dfrac{\left[ C{{d}^{+2}} \right]{{\left[ O{{H}^{-}} \right]}^{2}}}{\left[ Cd{{\left( OH \right)}_{2}} \right]}\]
Therefore, $\left[ Cd{{\left( OH \right)}_{2}} \right]K={{K}_{sp}}=\left[ C{{d}^{+2}} \right]{{\left[ O{{H}^{-}} \right]}^{2}}$
- So, ${{K}_{sp}}$ = $S\times {{(2S)}^{2}}=4{{S}^{3}}$
Here the power 2 is the stoichiometric constant of $O{{H}^{-}}$ions.
- In the question value of solubility is given as $1.84\times {{10}^{-5}}M$, putting this value of S we get:
${{K}_{sp}}$ = $4\times {{(1.84\times {{10}^{-5}})}^{3}}=2.49\times {{10}^{-14}}$
- Now the pH of the given buffer solution is pH = 12
- Therefore, the pOH will be, pOH = 2
-Through this we can calculate the concentration of $O{{H}^{-}}$ions.
-log[$O{{H}^{-}}$] = 2
[$O{{H}^{-}}$] = 10-2
- Now, let’s see the equation again
\[Cd{{\left( OH \right)}_{2}}\rightleftharpoons C{{d}^{+2}}+2O{{H}^{-}}\]
S ${{10}^{-2}}$
Now, the ${{K}_{sp}}$ will be
${{K}_{sp}}$ = $S\times {{({{10}^{-2}})}^{2}}$
We already calculated the value earlier ${{K}_{sp}}$ = $2.49\times {{10}^{-14}}$
Now put this value and after solving the equation we get
$2.49\times {{10}^{-14}}$= $S\times {{({{10}^{-2}})}^{2}}$
Therefore, S = $2.49\times {{10}^{-10}}M$
So, the expected solubility of \[Cd{{\left( OH \right)}_{2}}\] in a buffer solution of pH = 12 is option D. $2.49\times {{10}^{-10}}M$
Note: Remember that solubility is usually expressed in terms of mass of solute per 100mL of solvent, whereas ${{K}_{sp}}$ is defined in terms of the molar concentrations of the component ions.
While calculating the product of solubility of the ions is raised to the power of their stoichiometric constant. For example:
$\left[ Cd{{\left( OH \right)}_{2}} \right]K={{K}_{sp}}=\left[ C{{d}^{+2}} \right]{{\left[ O{{H}^{-}} \right]}^{2}}$,
The power 2 is the stoichiometric constant of the $O{{H}^{-}}$ions.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

