The minimum value of ${x^2} - 12x + 40$ and the maximum value of $24x - 8 - 9{x^2}$ is?
Answer
363.3k+ views
Hint-In this question we have to find the minimum and maximum value of the given quadratic equations. Check for the coefficient of highest power term to be positive or negative and apply the respective formula for maximum and minimum value of a quadratic equation.
Complete step-by-step answer:
We have to find the minimum value of ${x^2} - 12x + 40$ and the maximum value of $24x - 8 - 9{x^2}$.
$ \Rightarrow $ Now if we have a quadratic equation of the form ${\text{a}}{{\text{x}}^2} + bx + c = 0$such that $a > 0$ then the minimum value of this quadratic equation is $\dfrac{{4ac - {b^2}}}{{2a}}$at the point x=$\dfrac{b}{{2a}}$ and in this case the maximum value doesn’t exist as the parabola formed is opening upwards and the domain of this equation is R (that is real numbers) thus the max value can go up to infinity.
$ \Rightarrow $ Now if we talk about a quadratic equation of the form ${\text{a}}{{\text{x}}^2} + bx + c = 0$ such that $a < 0$ then the maximum value of this quadratic equation is $\dfrac{{4ac - {b^2}}}{{2a}}$ at point x=$\dfrac{{ - b}}{{2a}}$ and in this case the minimum does not exist as the parabola formed is opening downwards and the domain of this equation is R (that is real numbers) thus the min value can go up to minus infinity.
Now in the equation ${x^2} - 12x + 40$ a=1, b=-12 and c=40
As $a > 0$ because 1>0, hence using the above mentioned concept it does not have a maximum value and the minimum value is given by $\dfrac{{4ac - {b^2}}}{{2a}}$.
So substituting the values we get minimum value = $\dfrac{{4(1) \times 40 - {{\left( { - 12} \right)}^2}}}{{2 \times 1}} = 8$
Now in the equation $24x - 8 - 9{x^2}$, a=-9, b=24, c=-8.
As $a < 0$ because -9<0, hence using the above mentioned concept at does not have a minimum value and the maximum value is given by $\dfrac{{4ac - {b^2}}}{{2a}}$.
So substituting the values we get the maximum value = $\dfrac{{4(9) \times ( - 8) - {{\left( {24} \right)}^2}}}{{2 \times 9}} = 16$
Note – Whenever we face such types of problems the key concept is to understand whether the parabola formed by the equation given is opening up parabola or opening down parabola, it all depends upon the value of the coefficient of highest power of that equation. Then applying the concept mentioned above we can get the answer.
Complete step-by-step answer:
We have to find the minimum value of ${x^2} - 12x + 40$ and the maximum value of $24x - 8 - 9{x^2}$.
$ \Rightarrow $ Now if we have a quadratic equation of the form ${\text{a}}{{\text{x}}^2} + bx + c = 0$such that $a > 0$ then the minimum value of this quadratic equation is $\dfrac{{4ac - {b^2}}}{{2a}}$at the point x=$\dfrac{b}{{2a}}$ and in this case the maximum value doesn’t exist as the parabola formed is opening upwards and the domain of this equation is R (that is real numbers) thus the max value can go up to infinity.
$ \Rightarrow $ Now if we talk about a quadratic equation of the form ${\text{a}}{{\text{x}}^2} + bx + c = 0$ such that $a < 0$ then the maximum value of this quadratic equation is $\dfrac{{4ac - {b^2}}}{{2a}}$ at point x=$\dfrac{{ - b}}{{2a}}$ and in this case the minimum does not exist as the parabola formed is opening downwards and the domain of this equation is R (that is real numbers) thus the min value can go up to minus infinity.
Now in the equation ${x^2} - 12x + 40$ a=1, b=-12 and c=40
As $a > 0$ because 1>0, hence using the above mentioned concept it does not have a maximum value and the minimum value is given by $\dfrac{{4ac - {b^2}}}{{2a}}$.
So substituting the values we get minimum value = $\dfrac{{4(1) \times 40 - {{\left( { - 12} \right)}^2}}}{{2 \times 1}} = 8$
Now in the equation $24x - 8 - 9{x^2}$, a=-9, b=24, c=-8.
As $a < 0$ because -9<0, hence using the above mentioned concept at does not have a minimum value and the maximum value is given by $\dfrac{{4ac - {b^2}}}{{2a}}$.
So substituting the values we get the maximum value = $\dfrac{{4(9) \times ( - 8) - {{\left( {24} \right)}^2}}}{{2 \times 9}} = 16$
Note – Whenever we face such types of problems the key concept is to understand whether the parabola formed by the equation given is opening up parabola or opening down parabola, it all depends upon the value of the coefficient of highest power of that equation. Then applying the concept mentioned above we can get the answer.
Last updated date: 29th Sep 2023
•
Total views: 363.3k
•
Views today: 3.63k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Why are resources distributed unequally over the e class 7 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

What is the past tense of read class 10 english CBSE
