Answer

Verified

412.5k+ views

**Hint:**The formula for mean is the division of the sum of all the observations to the total number of observations. Now, the number of possibilities for the product of n natural numbers taken two at a time is selecting 2 natural numbers from n natural numbers. And the sum of the observations (i.e. product of n natural numbers taken two at a time) is calculated as follows: by multiplying the sum of first n natural numbers by itself and then equating them with the sum of the square of each n natural number with the twice of the sum of the product of n natural numbers taken two at a time. Solving this equation will give you the sum of the product of n natural numbers taken two at a time.

**Complete step-by-step solution:**We have to find the mean (average) of the product of n natural numbers taken two at a time.

We know the formula for mean of any observations as:

$Mean=\dfrac{\text{Sum of observations}}{\text{Total number of observations}}$

Total number of observations includes the number of ways of writing the product of n natural numbers taken two at a time which will be selecting 2 natural numbers from n natural numbers.

${}^{n}{{C}_{2}}$

Sum of observation includes the sum of product of n natural numbers taken two at a time are:

$\left( 1+2+3+.....+n \right)\left( 1+2+3+....+n \right)={{1}^{2}}+{{2}^{2}}+{{3}^{2}}+.....+{{n}^{2}}+2\sum\limits_{i,j=1}^{n}{{{a}_{i}}{{a}_{j}}}$…….. Eq. (1)

We know the sum of first n natural numbers and sum of square of first n natural numbers which we have shown below.

$\begin{align}

& 1+2+3+....+n=\dfrac{n\left( n+1 \right)}{2} \\

& {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+.....+{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \\

\end{align}$

Substituting the above values in eq. (1) we get,

$\begin{align}

& {{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}+2\sum\limits_{i,j=1}^{n}{{{a}_{i}}{{a}_{j}}} \\

& \Rightarrow {{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}-\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}=2\sum\limits_{i,j=1}^{n}{{{a}_{i}}{{a}_{j}}} \\

\end{align}$

Taking \[n\left( n+1 \right)\] as common in the above equation we get,

$\begin{align}

& n\left( n+1 \right)\left( \dfrac{n\left( n+1 \right)}{4}-\dfrac{2n+1}{6} \right)=2\sum\limits_{i,j=1}^{n}{{{a}_{i}}{{a}_{j}}} \\

& \Rightarrow \dfrac{n\left( n+1 \right)}{2}\left( \dfrac{3n\left( n+1 \right)-4n-2}{12} \right)=\sum\limits_{i,j=1}^{n}{{{a}_{i}}{{a}_{j}}} \\

& \Rightarrow \dfrac{n\left( n+1 \right)}{2}\left( \dfrac{3{{n}^{2}}+3n-4n-2}{6} \right)=\sum\limits_{i,j=1}^{n}{{{a}_{i}}{{a}_{j}}} \\

& \Rightarrow \dfrac{n\left( n+1 \right)}{2}\left( \dfrac{3{{n}^{2}}-n-2}{6} \right)=\sum\limits_{i,j=1}^{n}{{{a}_{i}}{{a}_{j}}} \\

\end{align}$

We can factorize $3{{n}^{2}}-n-2$ as follows:

$\begin{align}

& 3{{n}^{2}}-n-2 \\

& =3{{n}^{2}}-3n+2n-2 \\

& =3n\left( n-1 \right)+2\left( n-1 \right) \\

& =\left( 3n+2 \right)\left( n-1 \right) \\

\end{align}$

Substituting the above factorization we get,

\[\begin{align}

& \dfrac{n\left( n+1 \right)}{2}\left( \dfrac{3{{n}^{2}}-n-2}{6} \right)=\sum\limits_{i,j=1}^{n}{{{a}_{i}}{{a}_{j}}} \\

& \Rightarrow \dfrac{n\left( n+1 \right)}{2}\left( \dfrac{\left( 3n+2 \right)\left( n-1 \right)}{6} \right)=\sum\limits_{i,j=1}^{n}{{{a}_{i}}{{a}_{j}}} \\

& \Rightarrow \dfrac{n\left( n+1 \right)}{12}\left( \left( 3n+2 \right)\left( n-1 \right) \right)=\sum\limits_{i,j=1}^{n}{{{a}_{i}}{{a}_{j}}} \\

\end{align}\]

Now, substituting sum of observations as \[\dfrac{n\left( n+1 \right)}{12}\left( \left( 3n+2 \right)\left( n-1 \right) \right)\] and number of observations as ${}^{n}{{C}_{2}}$ in the mean formula we get,

$Mean=\dfrac{\dfrac{n\left( n+1 \right)}{12}\left( \left( 3n+2 \right)\left( n-1 \right) \right)}{{}^{n}{{C}_{2}}}$

We can write ${}^{n}{{C}_{2}}=\dfrac{n\left( n-1 \right)}{2}$ in the above formula.

$Mean=\dfrac{\dfrac{n\left( n+1 \right)}{12}\left( \left( 3n+2 \right)\left( n-1 \right) \right)}{\dfrac{n\left( n-1 \right)}{2}}$

In the above formula, $\dfrac{n\left( n-1 \right)}{2}$ will be cancelled out and we are left with:

\[Mean=\dfrac{\left( n+1 \right)\left( 3n+2 \right)}{6}\]

**Hence, the correct option is (c).**

**Note:**The possible mistake that could happen in the above problem is that you might think that the sum of the product of n natural numbers taken two at a time is the sum of the square of first n natural numbers.

The sum of the square of first n natural numbers is:

${{1}^{2}}+{{2}^{2}}+{{3}^{2}}+.....+{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$

The above interpretation of the sum of the product of n natural numbers taken two at a time is wrong because it is given that we are taking any two natural numbers at a time not specifically two same natural numbers at a time.

Recently Updated Pages

The base of a right prism is a pentagon whose sides class 10 maths CBSE

A die is thrown Find the probability that the number class 10 maths CBSE

A mans age is six times the age of his son In six years class 10 maths CBSE

A started a business with Rs 21000 and is joined afterwards class 10 maths CBSE

Aasifbhai bought a refrigerator at Rs 10000 After some class 10 maths CBSE

Give a brief history of the mathematician Pythagoras class 10 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail