
The maximum value of $\dfrac{\log x}{x}$ in $\left( 2,\infty \right)$ is
A. 5
B. $\dfrac{5}{e}$
C. ${{e}^{2}}$
D. $\dfrac{1}{e}$
Answer
600.6k+ views
Hint: In this question, we will use the quotient rule of differentiation. It is given by,
$\dfrac{d\left( \dfrac{u}{v} \right)}{dx}=\dfrac{\dfrac{d\left( u \right)}{dx}.v-\dfrac{d\left( v \right)}{dx}.u}{{{\left( v \right)}^{2}}}$
Then we will find the maximum value of $\dfrac{\log x}{x}$ in interval $\left( 2,\infty \right)$.
For obtaining maximum value, we will equate $\dfrac{dy}{dx}=0$.
We will also use some basic logarithm formulas to make the solution simple and short.
Complete step-by-step answer:
We will put the obtained value of x by equating $\dfrac{dy}{dx}=0$ in the given function to get the maximum value of $\dfrac{\log x}{x}$ in $\left( 2,\infty \right)$.
It is given in the question that we have to find out the maximum value of $\dfrac{\log x}{x}$ an interval $\left( 2,\infty \right)$.
Let us assume that,
$y=\dfrac{\log x}{x}..............\left( 1 \right)$
We know the differentiation of log (x) with the respect of x is $\dfrac{1}{x}$ and differentiation of $\left( \dfrac{u}{v} \right)$ is
$\begin{align}
& \dfrac{u'v-v'u}{{{v}^{2}}} \\
& or \\
& \dfrac{d\left( \dfrac{u}{v} \right)}{dx}=\dfrac{\dfrac{d\left( u \right)}{dx}.v-\dfrac{d\left( v \right)}{dx}.u}{{{\left( v \right)}^{2}}} \\
\end{align}$
Using this basic differentiation on equation (1) with respect to x, we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{\dfrac{d\left( \log x \right)}{dx}.x-\dfrac{d\left( x \right)}{dx}.\log x}{{{\left( x \right)}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{\dfrac{1}{x}.x-1.\log x}{{{\left( x \right)}^{2}}} \\
\end{align}$
Cancelling out like terms in the above equation, we get,
$\dfrac{dy}{dx}=\dfrac{1-\log x}{{{\left( x \right)}^{2}}}..........\left( 2 \right)$
To get maximum point, we will equate equation (2) with 0 as, for maximum value $\dfrac{dy}{dx}=0$
$\begin{align}
& \Rightarrow \dfrac{1-\log x}{{{\left( x \right)}^{2}}}=0 \\
& \Rightarrow 1-\log x=0 \\
& \Rightarrow -\log x=-1 \\
\end{align}$
On multiplying (-1) both the sides, we get,
$\Rightarrow \log x=1...........\left( 3 \right)$
We know that $\log e=1$ from the basic logarithm. So, replacing 1 with $\log e$ in equation (3), we get,
$\Rightarrow \log \left( x \right)=\log \left( e \right).........\left( 4 \right)$
So, from this, we get x = e.
Now, from the calculus, we know that to know which point is maximum and which point is minimum we have to double differentiate the function. If f”(x) is positive then it is a point of minimum and if the sign is negative then it is a point of maximum.
Also, we have calculated that the value of x = e to get maximum value from $\dfrac{\log x}{x}$ but in question the function is restricted in the interval $\left( 2,\infty \right)$.
Also, we know that the value of e is 2.303 and we are also getting the maximum value of $\dfrac{\log x}{x}$ as e, which is lying in the given interval $\left( 2,\infty \right)$.
So, putting the value of x as e in a given function $y=\dfrac{\log x}{x}$, we get,
$\begin{align}
& y=\dfrac{\log x}{x} \\
& y=\dfrac{\log e}{e}............\left( 5 \right) \\
\end{align}$
We know that the value of log e is 1. So, putting the value of log e =1 in equation (5), we get,
$y=\dfrac{1}{e}$
Thus, the maximum value of $\dfrac{\log x}{x}$ in interval $\left( 2,\infty \right)$is $\dfrac{1}{e}$.
Therefore, option (D) is the correct answer.
Note: You can solve this question in just two steps. First, differentiate the given function and if you get $\dfrac{dy}{dx}=0$. Then find the value of the unknown directly if the value of the unknown is positive. Then it is a point of minimum and if it is negative then it is a point of maximum.
$\dfrac{d\left( \dfrac{u}{v} \right)}{dx}=\dfrac{\dfrac{d\left( u \right)}{dx}.v-\dfrac{d\left( v \right)}{dx}.u}{{{\left( v \right)}^{2}}}$
Then we will find the maximum value of $\dfrac{\log x}{x}$ in interval $\left( 2,\infty \right)$.
For obtaining maximum value, we will equate $\dfrac{dy}{dx}=0$.
We will also use some basic logarithm formulas to make the solution simple and short.
Complete step-by-step answer:
We will put the obtained value of x by equating $\dfrac{dy}{dx}=0$ in the given function to get the maximum value of $\dfrac{\log x}{x}$ in $\left( 2,\infty \right)$.
It is given in the question that we have to find out the maximum value of $\dfrac{\log x}{x}$ an interval $\left( 2,\infty \right)$.
Let us assume that,
$y=\dfrac{\log x}{x}..............\left( 1 \right)$
We know the differentiation of log (x) with the respect of x is $\dfrac{1}{x}$ and differentiation of $\left( \dfrac{u}{v} \right)$ is
$\begin{align}
& \dfrac{u'v-v'u}{{{v}^{2}}} \\
& or \\
& \dfrac{d\left( \dfrac{u}{v} \right)}{dx}=\dfrac{\dfrac{d\left( u \right)}{dx}.v-\dfrac{d\left( v \right)}{dx}.u}{{{\left( v \right)}^{2}}} \\
\end{align}$
Using this basic differentiation on equation (1) with respect to x, we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{\dfrac{d\left( \log x \right)}{dx}.x-\dfrac{d\left( x \right)}{dx}.\log x}{{{\left( x \right)}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{\dfrac{1}{x}.x-1.\log x}{{{\left( x \right)}^{2}}} \\
\end{align}$
Cancelling out like terms in the above equation, we get,
$\dfrac{dy}{dx}=\dfrac{1-\log x}{{{\left( x \right)}^{2}}}..........\left( 2 \right)$
To get maximum point, we will equate equation (2) with 0 as, for maximum value $\dfrac{dy}{dx}=0$
$\begin{align}
& \Rightarrow \dfrac{1-\log x}{{{\left( x \right)}^{2}}}=0 \\
& \Rightarrow 1-\log x=0 \\
& \Rightarrow -\log x=-1 \\
\end{align}$
On multiplying (-1) both the sides, we get,
$\Rightarrow \log x=1...........\left( 3 \right)$
We know that $\log e=1$ from the basic logarithm. So, replacing 1 with $\log e$ in equation (3), we get,
$\Rightarrow \log \left( x \right)=\log \left( e \right).........\left( 4 \right)$
So, from this, we get x = e.
Now, from the calculus, we know that to know which point is maximum and which point is minimum we have to double differentiate the function. If f”(x) is positive then it is a point of minimum and if the sign is negative then it is a point of maximum.
Also, we have calculated that the value of x = e to get maximum value from $\dfrac{\log x}{x}$ but in question the function is restricted in the interval $\left( 2,\infty \right)$.
Also, we know that the value of e is 2.303 and we are also getting the maximum value of $\dfrac{\log x}{x}$ as e, which is lying in the given interval $\left( 2,\infty \right)$.
So, putting the value of x as e in a given function $y=\dfrac{\log x}{x}$, we get,
$\begin{align}
& y=\dfrac{\log x}{x} \\
& y=\dfrac{\log e}{e}............\left( 5 \right) \\
\end{align}$
We know that the value of log e is 1. So, putting the value of log e =1 in equation (5), we get,
$y=\dfrac{1}{e}$
Thus, the maximum value of $\dfrac{\log x}{x}$ in interval $\left( 2,\infty \right)$is $\dfrac{1}{e}$.
Therefore, option (D) is the correct answer.
Note: You can solve this question in just two steps. First, differentiate the given function and if you get $\dfrac{dy}{dx}=0$. Then find the value of the unknown directly if the value of the unknown is positive. Then it is a point of minimum and if it is negative then it is a point of maximum.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

What is Environment class 11 chemistry CBSE

10 examples of diffusion in everyday life

Give four adaptations shown by flowers pollinated by class 11 biology CBSE

