
What should be the mass of the photon of sodium if its wavelength is 5894$\mathop {\rm A}\limits^ \circ $? (The velocity of light is $3 \times {10^8}$ metre/second and the value of h is $6.6252 \times {10^{ - 34}}kg.{m^2}/s$.)
(A) $3.75 \times {10^{ - 36}}$ g
(B) $3.75 \times {10^{ - 36}}$ kg
(C) $1.25 \times {10^{ - 36}}$ kg
(D) $1.25 \times {10^{ - 36}}$ g
Answer
575.7k+ views
Hint: The question gives us the value of wavelength, speed and Planck’s constant. We will calculate the mass of the photon using de Broglie’s equation:
$\lambda = \dfrac{h}{{mc}}$
Complete step by step solution:
-First of all, let us talk about the de-Broglie equation for a photon.
The de-Broglie equation describes the wave nature of an electron. An electromagnetic equation exhibits dual nature: of a particle because it has momentum and wave because it has both wavelength and frequency. The de-Broglie equation exhibits the relationship between the momentum of a particle and its wavelength and so the wavelength is known as de-Broglie wavelength. Mathematically this equation for a photon is:
$\lambda = \dfrac{h}{{mc}}$-------- (1)
Where, λ = de-Broglie wavelength;
$h$ = Planck’s constant = $6.6252 \times {10^{ - 34}}kg.{m^2}/s$;
$c$ = velocity of light = $3 \times {10^8}$ metre/second;
$m$ = mass of particle.
-The question gives us the value of wavelength is 5894$\mathop {\rm A}\limits^ \circ $ and we need to calculate the mass of the photon. We will do this using the de-Broglie equation (1):
$λ$ = 5894$\mathop {\rm A}\limits^ \circ $ = $5894 \times {10^{ - 10}}$ m
$h$ = $6.6252 \times {10^{ - 34}}kg.{m^2}/s$
$c$ = $3 \times {10^8}$ metre/second
$\lambda = \dfrac{h}{{mc}}$
$5894 \times {10^{ - 10}} = \dfrac{{6.6252 \times {{10}^{ - 34}}}}{{m \times 3 \times {{10}^8}}}$
$m = \dfrac{{6.6252 \times {{10}^{ - 34}}}}{{3 \times {{10}^8} \times 5894 \times {{10}^{ - 10}}}}$
= $\dfrac{{6.6252 \times {{10}^{ - 34}}}}{{17682 \times {{10}^{ - 2}}}}$
= $3.746 \times {10^{ - 36}}$ kg
Hence we can now tell that the mass of the photon of sodium will be $3.746 \times {10^{ - 36}}$ kg.
So, the correct option will be: $3.746 \times {10^{ - 36}}$ kg.
Note: The mass ‘m’ we calculate here is the relativistic mass and not the rest mass because the rest mass of a photon is always zero (0).
Also if a particle moves with velocity v, the momentum of the particle will be: p = mv and the de-Broglie wavelength will be:
$\lambda = \dfrac{h}{{mv}}$
$\lambda = \dfrac{h}{{mc}}$
Complete step by step solution:
-First of all, let us talk about the de-Broglie equation for a photon.
The de-Broglie equation describes the wave nature of an electron. An electromagnetic equation exhibits dual nature: of a particle because it has momentum and wave because it has both wavelength and frequency. The de-Broglie equation exhibits the relationship between the momentum of a particle and its wavelength and so the wavelength is known as de-Broglie wavelength. Mathematically this equation for a photon is:
$\lambda = \dfrac{h}{{mc}}$-------- (1)
Where, λ = de-Broglie wavelength;
$h$ = Planck’s constant = $6.6252 \times {10^{ - 34}}kg.{m^2}/s$;
$c$ = velocity of light = $3 \times {10^8}$ metre/second;
$m$ = mass of particle.
-The question gives us the value of wavelength is 5894$\mathop {\rm A}\limits^ \circ $ and we need to calculate the mass of the photon. We will do this using the de-Broglie equation (1):
$λ$ = 5894$\mathop {\rm A}\limits^ \circ $ = $5894 \times {10^{ - 10}}$ m
$h$ = $6.6252 \times {10^{ - 34}}kg.{m^2}/s$
$c$ = $3 \times {10^8}$ metre/second
$\lambda = \dfrac{h}{{mc}}$
$5894 \times {10^{ - 10}} = \dfrac{{6.6252 \times {{10}^{ - 34}}}}{{m \times 3 \times {{10}^8}}}$
$m = \dfrac{{6.6252 \times {{10}^{ - 34}}}}{{3 \times {{10}^8} \times 5894 \times {{10}^{ - 10}}}}$
= $\dfrac{{6.6252 \times {{10}^{ - 34}}}}{{17682 \times {{10}^{ - 2}}}}$
= $3.746 \times {10^{ - 36}}$ kg
Hence we can now tell that the mass of the photon of sodium will be $3.746 \times {10^{ - 36}}$ kg.
So, the correct option will be: $3.746 \times {10^{ - 36}}$ kg.
Note: The mass ‘m’ we calculate here is the relativistic mass and not the rest mass because the rest mass of a photon is always zero (0).
Also if a particle moves with velocity v, the momentum of the particle will be: p = mv and the de-Broglie wavelength will be:
$\lambda = \dfrac{h}{{mv}}$
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

