
The main oxides formed on combustion of $\text{Li}$,$\text{Na}$ and $\text{K}$ in excess of air are respectively:
A. $\text{Li}{{\text{O}}_{2}}\text{, N}{{\text{a}}_{2}}{{\text{O}}_{2}}\text{ and }{{\text{K}}_{2}}\text{O}$
B. $\text{L}{{\text{i}}_{2}}{{\text{O}}_{2}}\text{,N}{{\text{a}}_{2}}{{\text{O}}_{2}}\text{ and K}{{\text{O}}_{2}}$
C. $\text{L}{{\text{i}}_{2}}\text{O,N}{{\text{a}}_{2}}{{\text{O}}_{2}}\text{ and K}{{\text{O}}_{2}}$
D. $\text{L}{{\text{i}}_{2}}\text{O,N}{{\text{a}}_{2}}\text{O and K}{{\text{O}}_{2}}$
Answer
485.4k+ views
Hint: The combustion of metals with excess of air means the reaction of these metals with oxygen gas or (${{\text{O}}_{2}}$). When a compound or element reacts with oxygen, it forms its corresponding oxides.
Complete answer:
Let us see the reaction of certain metals like$\text{Li}$,$\text{Na}$and$\text{K}$ with ${{\text{O}}_{2}}$.
(1) Li or Lithium: Lithium is a metal with atomic number 3. When lithium metal is burned in excess of air, it combines with oxygen to form its oxide which is lithium oxide. The formation of lithium oxide occurs by the reaction $\text{4Li}+{{\text{O}}_{2}}\to 2\text{L}{{\text{i}}_{2}}\text{O}$.
(2) Na or Sodium: The reaction of metallic sodium with oxygen at 130–200 °C on a large scale; it is a process that generates sodium oxide, which absorbs oxygen to produce Sodium peroxide. The reaction is $\text{4Na}+{{\text{O}}_{2}}\to \text{2N}{{\text{a}}_{2}}\text{O}$ after absorption of oxygen then reaction is $\text{2N}{{\text{a}}_{2}}\text{O}+{{\text{O}}_{2}}\to 2\text{N}{{\text{a}}_{2}}{{\text{O}}_{2}}$.$\text{N}{{\text{a}}_{2}}{{\text{O}}_{2}}$ is sodium peroxide which is a yellowish solid.
(3) K or Potassium: By burning molten potassium in oxygen, Potassium superoxide or $\text{K}{{\text{O}}_{2}}$ is produced. The salt contains ${{\text{K}}^{+}}$ and $\text{O}_{2}^{-}$which are bounded by ionic bonds. The reaction is $\text{K}+{{\text{O}}_{2}}\to \text{K}{{\text{O}}_{2}}$. Potassium superoxide is inorganic and yellow paramagnetic solid which has the formula $\text{K}{{\text{O}}_{2}}$.
The correct answer to this question is $\text{L}{{\text{i}}_{2}}\text{O,N}{{\text{a}}_{2}}{{\text{O}}_{2}}\text{ and K}{{\text{O}}_{2}}$, which is option ‘c’.
Additional Information:
Use of potassium superoxide:
(1) $\text{K}{{\text{O}}_{2}}$ is used in canisters for rebreathers for firefighting.
Use of sodium peroxide:
(1) Sodium peroxide used to bleach wood pulp for production of paper and textiles.
Use of lithium oxide:
(1) Added as a co-dopant with yttria in the zirconia ceramic top coat without affecting the expected life of the coating.
Note:
The oxides of different metals have different oxidations of oxygen in all three compounds. The oxidation state of oxygen in $\text{L}{{\text{i}}_{2}}\text{O,N}{{\text{a}}_{2}}{{\text{O}}_{2}}\text{ and K}{{\text{O}}_{2}}$is -2, -1 (peroxide linkage) and -${}^{1}/{}_{2}$ (superoxide ion).
Complete answer:
Let us see the reaction of certain metals like$\text{Li}$,$\text{Na}$and$\text{K}$ with ${{\text{O}}_{2}}$.
(1) Li or Lithium: Lithium is a metal with atomic number 3. When lithium metal is burned in excess of air, it combines with oxygen to form its oxide which is lithium oxide. The formation of lithium oxide occurs by the reaction $\text{4Li}+{{\text{O}}_{2}}\to 2\text{L}{{\text{i}}_{2}}\text{O}$.
(2) Na or Sodium: The reaction of metallic sodium with oxygen at 130–200 °C on a large scale; it is a process that generates sodium oxide, which absorbs oxygen to produce Sodium peroxide. The reaction is $\text{4Na}+{{\text{O}}_{2}}\to \text{2N}{{\text{a}}_{2}}\text{O}$ after absorption of oxygen then reaction is $\text{2N}{{\text{a}}_{2}}\text{O}+{{\text{O}}_{2}}\to 2\text{N}{{\text{a}}_{2}}{{\text{O}}_{2}}$.$\text{N}{{\text{a}}_{2}}{{\text{O}}_{2}}$ is sodium peroxide which is a yellowish solid.
(3) K or Potassium: By burning molten potassium in oxygen, Potassium superoxide or $\text{K}{{\text{O}}_{2}}$ is produced. The salt contains ${{\text{K}}^{+}}$ and $\text{O}_{2}^{-}$which are bounded by ionic bonds. The reaction is $\text{K}+{{\text{O}}_{2}}\to \text{K}{{\text{O}}_{2}}$. Potassium superoxide is inorganic and yellow paramagnetic solid which has the formula $\text{K}{{\text{O}}_{2}}$.
The correct answer to this question is $\text{L}{{\text{i}}_{2}}\text{O,N}{{\text{a}}_{2}}{{\text{O}}_{2}}\text{ and K}{{\text{O}}_{2}}$, which is option ‘c’.
Additional Information:
Use of potassium superoxide:
(1) $\text{K}{{\text{O}}_{2}}$ is used in canisters for rebreathers for firefighting.
Use of sodium peroxide:
(1) Sodium peroxide used to bleach wood pulp for production of paper and textiles.
Use of lithium oxide:
(1) Added as a co-dopant with yttria in the zirconia ceramic top coat without affecting the expected life of the coating.
Note:
The oxides of different metals have different oxidations of oxygen in all three compounds. The oxidation state of oxygen in $\text{L}{{\text{i}}_{2}}\text{O,N}{{\text{a}}_{2}}{{\text{O}}_{2}}\text{ and K}{{\text{O}}_{2}}$is -2, -1 (peroxide linkage) and -${}^{1}/{}_{2}$ (superoxide ion).
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
