Answer
Verified
493.5k+ views
Hint: Vertex of the parabola is the point at which the parabola acquires minimum or maximum value. Differentiate the given equation of parabola and equate it to zero to find the vertex of parabola and then solve it to find the locus of vertices of parabola.
We have the equation of parabola as\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\]. To find the vertices of the given family of parabolas, we will differentiate the given equation of
parabola and equate it to zero as vertex of the parabola is the point at which the parabola acquires
minimum or maximum value.
Here, we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a\].
We can write\[y\]as a sum of three functions\[y=f\left( x \right)+g\left( x \right)+h\left( x
\right)\]such that\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x
\right)=\dfrac{{{a}^{2}}x}{2},h\left( x \right)=-2a\].
We will use sum rule for differentiation of functions which states that if\[y=f\left( x \right)+g\left( x
\right)+h\left( x \right)\], then we have\[\dfrac{dy}{dx}=\dfrac{df\left( x \right)}{dx}+\dfrac{dg\left( x
\right)}{dx}+\dfrac{dh\left( x \right)}{dx}\].
Substituting\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x \right)=\dfrac{{{a}^{2}}x}{2},h\left(
x \right)=-2a\]in the above equation, we have\[\dfrac{dy}{dx}=\dfrac{d\left(
\dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -
2a \right)}{dx}\]. \[...\left( 1 \right)\]
We know that differentiation of constant function is zero. Thus,\[\dfrac{d}{dx}h\left( x
\right)=\dfrac{d}{dx}(-2a)=0\] \[...\left( 2 \right)\]
We know that differentiation of any function of the
form\[y=m{{x}^{n}}\]is\[\dfrac{dy}{dx}=mn{{x}^{n-1}}\].
Substituting\[m=\dfrac{{{a}^{3}}}{3},n=2\]in the above equation, we have\[\dfrac{df\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}=\dfrac{2{{a}^{3}}x}{3}\]. \[...\left(
3 \right)\]
Substituting\[m=\dfrac{{{a}^{2}}}{2},n=1\]in the above equation, we have\[\dfrac{dg\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}=\dfrac{{{a}^{2}}}{2}\]. \[...\left( 4
\right)\]
Substituting equation\[\left( 2 \right)\],\[\left( 3 \right)\]and\[\left( 4 \right)\]in equation\[\left( 1
\right)\], we have\[\dfrac{dy}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3}
\right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -2a
\right)}{dx}=\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}\].
To find the maximum or minimum of a function, we want\[\dfrac{dy}{dx}=0\].
Thus, we have\[\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}=0\]
Solving the above equation, we have\[x=\dfrac{-3}{4a}\]
Substituting the value of\[x\]in the equation\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\], we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a=\dfrac{{{a}^{3}}{{\left( \dfrac{-
3}{4a} \right)}^{2}}}{3}+\dfrac{{{a}^{2}}\left( \dfrac{-3}{4a} \right)}{2}-2a\].
Solving the above equation, we get\[y=\dfrac{{{a}^{3}}}{3}\left( \dfrac{9}{16{{a}^{2}}}
\right)+\dfrac{{{a}^{2}}}{2}\left( \dfrac{-3}{4a} \right)-2a=\dfrac{3a}{16}-\dfrac{3a}{8}-2a\].
\[\Rightarrow y=\dfrac{3a-6a-32a}{16}=\dfrac{-35a}{16}\]
Hence, we have\[y=\dfrac{-35a}{16},x=\dfrac{-3}{4a}\].
Multiplying both equations, we get\[xy=\dfrac{105}{64}\].
Hence, the correct answer is\[xy=\dfrac{105}{64}\].
Note: It’s necessary to consider the fact that the vertex of the parabola is the point at which the parabola acquires minimum or maximum value. We can’t solve this question without using this fact.
We have the equation of parabola as\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\]. To find the vertices of the given family of parabolas, we will differentiate the given equation of
parabola and equate it to zero as vertex of the parabola is the point at which the parabola acquires
minimum or maximum value.
Here, we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a\].
We can write\[y\]as a sum of three functions\[y=f\left( x \right)+g\left( x \right)+h\left( x
\right)\]such that\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x
\right)=\dfrac{{{a}^{2}}x}{2},h\left( x \right)=-2a\].
We will use sum rule for differentiation of functions which states that if\[y=f\left( x \right)+g\left( x
\right)+h\left( x \right)\], then we have\[\dfrac{dy}{dx}=\dfrac{df\left( x \right)}{dx}+\dfrac{dg\left( x
\right)}{dx}+\dfrac{dh\left( x \right)}{dx}\].
Substituting\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x \right)=\dfrac{{{a}^{2}}x}{2},h\left(
x \right)=-2a\]in the above equation, we have\[\dfrac{dy}{dx}=\dfrac{d\left(
\dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -
2a \right)}{dx}\]. \[...\left( 1 \right)\]
We know that differentiation of constant function is zero. Thus,\[\dfrac{d}{dx}h\left( x
\right)=\dfrac{d}{dx}(-2a)=0\] \[...\left( 2 \right)\]
We know that differentiation of any function of the
form\[y=m{{x}^{n}}\]is\[\dfrac{dy}{dx}=mn{{x}^{n-1}}\].
Substituting\[m=\dfrac{{{a}^{3}}}{3},n=2\]in the above equation, we have\[\dfrac{df\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}=\dfrac{2{{a}^{3}}x}{3}\]. \[...\left(
3 \right)\]
Substituting\[m=\dfrac{{{a}^{2}}}{2},n=1\]in the above equation, we have\[\dfrac{dg\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}=\dfrac{{{a}^{2}}}{2}\]. \[...\left( 4
\right)\]
Substituting equation\[\left( 2 \right)\],\[\left( 3 \right)\]and\[\left( 4 \right)\]in equation\[\left( 1
\right)\], we have\[\dfrac{dy}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3}
\right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -2a
\right)}{dx}=\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}\].
To find the maximum or minimum of a function, we want\[\dfrac{dy}{dx}=0\].
Thus, we have\[\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}=0\]
Solving the above equation, we have\[x=\dfrac{-3}{4a}\]
Substituting the value of\[x\]in the equation\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\], we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a=\dfrac{{{a}^{3}}{{\left( \dfrac{-
3}{4a} \right)}^{2}}}{3}+\dfrac{{{a}^{2}}\left( \dfrac{-3}{4a} \right)}{2}-2a\].
Solving the above equation, we get\[y=\dfrac{{{a}^{3}}}{3}\left( \dfrac{9}{16{{a}^{2}}}
\right)+\dfrac{{{a}^{2}}}{2}\left( \dfrac{-3}{4a} \right)-2a=\dfrac{3a}{16}-\dfrac{3a}{8}-2a\].
\[\Rightarrow y=\dfrac{3a-6a-32a}{16}=\dfrac{-35a}{16}\]
Hence, we have\[y=\dfrac{-35a}{16},x=\dfrac{-3}{4a}\].
Multiplying both equations, we get\[xy=\dfrac{105}{64}\].
Hence, the correct answer is\[xy=\dfrac{105}{64}\].
Note: It’s necessary to consider the fact that the vertex of the parabola is the point at which the parabola acquires minimum or maximum value. We can’t solve this question without using this fact.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE