
The locus of the vertices of the family of
parabolas\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a\]is
(a) \[xy=\dfrac{3}{4}\]
(b) \[xy=\dfrac{35}{16}\]
(c) \[xy=\dfrac{64}{105}\]
(d) \[xy=\dfrac{105}{64}\]
Answer
608.1k+ views
Hint: Vertex of the parabola is the point at which the parabola acquires minimum or maximum value. Differentiate the given equation of parabola and equate it to zero to find the vertex of parabola and then solve it to find the locus of vertices of parabola.
We have the equation of parabola as\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\]. To find the vertices of the given family of parabolas, we will differentiate the given equation of
parabola and equate it to zero as vertex of the parabola is the point at which the parabola acquires
minimum or maximum value.
Here, we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a\].
We can write\[y\]as a sum of three functions\[y=f\left( x \right)+g\left( x \right)+h\left( x
\right)\]such that\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x
\right)=\dfrac{{{a}^{2}}x}{2},h\left( x \right)=-2a\].
We will use sum rule for differentiation of functions which states that if\[y=f\left( x \right)+g\left( x
\right)+h\left( x \right)\], then we have\[\dfrac{dy}{dx}=\dfrac{df\left( x \right)}{dx}+\dfrac{dg\left( x
\right)}{dx}+\dfrac{dh\left( x \right)}{dx}\].
Substituting\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x \right)=\dfrac{{{a}^{2}}x}{2},h\left(
x \right)=-2a\]in the above equation, we have\[\dfrac{dy}{dx}=\dfrac{d\left(
\dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -
2a \right)}{dx}\]. \[...\left( 1 \right)\]
We know that differentiation of constant function is zero. Thus,\[\dfrac{d}{dx}h\left( x
\right)=\dfrac{d}{dx}(-2a)=0\] \[...\left( 2 \right)\]
We know that differentiation of any function of the
form\[y=m{{x}^{n}}\]is\[\dfrac{dy}{dx}=mn{{x}^{n-1}}\].
Substituting\[m=\dfrac{{{a}^{3}}}{3},n=2\]in the above equation, we have\[\dfrac{df\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}=\dfrac{2{{a}^{3}}x}{3}\]. \[...\left(
3 \right)\]
Substituting\[m=\dfrac{{{a}^{2}}}{2},n=1\]in the above equation, we have\[\dfrac{dg\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}=\dfrac{{{a}^{2}}}{2}\]. \[...\left( 4
\right)\]
Substituting equation\[\left( 2 \right)\],\[\left( 3 \right)\]and\[\left( 4 \right)\]in equation\[\left( 1
\right)\], we have\[\dfrac{dy}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3}
\right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -2a
\right)}{dx}=\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}\].
To find the maximum or minimum of a function, we want\[\dfrac{dy}{dx}=0\].
Thus, we have\[\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}=0\]
Solving the above equation, we have\[x=\dfrac{-3}{4a}\]
Substituting the value of\[x\]in the equation\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\], we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a=\dfrac{{{a}^{3}}{{\left( \dfrac{-
3}{4a} \right)}^{2}}}{3}+\dfrac{{{a}^{2}}\left( \dfrac{-3}{4a} \right)}{2}-2a\].
Solving the above equation, we get\[y=\dfrac{{{a}^{3}}}{3}\left( \dfrac{9}{16{{a}^{2}}}
\right)+\dfrac{{{a}^{2}}}{2}\left( \dfrac{-3}{4a} \right)-2a=\dfrac{3a}{16}-\dfrac{3a}{8}-2a\].
\[\Rightarrow y=\dfrac{3a-6a-32a}{16}=\dfrac{-35a}{16}\]
Hence, we have\[y=\dfrac{-35a}{16},x=\dfrac{-3}{4a}\].
Multiplying both equations, we get\[xy=\dfrac{105}{64}\].
Hence, the correct answer is\[xy=\dfrac{105}{64}\].
Note: It’s necessary to consider the fact that the vertex of the parabola is the point at which the parabola acquires minimum or maximum value. We can’t solve this question without using this fact.
We have the equation of parabola as\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\]. To find the vertices of the given family of parabolas, we will differentiate the given equation of
parabola and equate it to zero as vertex of the parabola is the point at which the parabola acquires
minimum or maximum value.
Here, we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a\].
We can write\[y\]as a sum of three functions\[y=f\left( x \right)+g\left( x \right)+h\left( x
\right)\]such that\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x
\right)=\dfrac{{{a}^{2}}x}{2},h\left( x \right)=-2a\].
We will use sum rule for differentiation of functions which states that if\[y=f\left( x \right)+g\left( x
\right)+h\left( x \right)\], then we have\[\dfrac{dy}{dx}=\dfrac{df\left( x \right)}{dx}+\dfrac{dg\left( x
\right)}{dx}+\dfrac{dh\left( x \right)}{dx}\].
Substituting\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x \right)=\dfrac{{{a}^{2}}x}{2},h\left(
x \right)=-2a\]in the above equation, we have\[\dfrac{dy}{dx}=\dfrac{d\left(
\dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -
2a \right)}{dx}\]. \[...\left( 1 \right)\]
We know that differentiation of constant function is zero. Thus,\[\dfrac{d}{dx}h\left( x
\right)=\dfrac{d}{dx}(-2a)=0\] \[...\left( 2 \right)\]
We know that differentiation of any function of the
form\[y=m{{x}^{n}}\]is\[\dfrac{dy}{dx}=mn{{x}^{n-1}}\].
Substituting\[m=\dfrac{{{a}^{3}}}{3},n=2\]in the above equation, we have\[\dfrac{df\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}=\dfrac{2{{a}^{3}}x}{3}\]. \[...\left(
3 \right)\]
Substituting\[m=\dfrac{{{a}^{2}}}{2},n=1\]in the above equation, we have\[\dfrac{dg\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}=\dfrac{{{a}^{2}}}{2}\]. \[...\left( 4
\right)\]
Substituting equation\[\left( 2 \right)\],\[\left( 3 \right)\]and\[\left( 4 \right)\]in equation\[\left( 1
\right)\], we have\[\dfrac{dy}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3}
\right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -2a
\right)}{dx}=\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}\].
To find the maximum or minimum of a function, we want\[\dfrac{dy}{dx}=0\].
Thus, we have\[\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}=0\]
Solving the above equation, we have\[x=\dfrac{-3}{4a}\]
Substituting the value of\[x\]in the equation\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\], we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a=\dfrac{{{a}^{3}}{{\left( \dfrac{-
3}{4a} \right)}^{2}}}{3}+\dfrac{{{a}^{2}}\left( \dfrac{-3}{4a} \right)}{2}-2a\].
Solving the above equation, we get\[y=\dfrac{{{a}^{3}}}{3}\left( \dfrac{9}{16{{a}^{2}}}
\right)+\dfrac{{{a}^{2}}}{2}\left( \dfrac{-3}{4a} \right)-2a=\dfrac{3a}{16}-\dfrac{3a}{8}-2a\].
\[\Rightarrow y=\dfrac{3a-6a-32a}{16}=\dfrac{-35a}{16}\]
Hence, we have\[y=\dfrac{-35a}{16},x=\dfrac{-3}{4a}\].
Multiplying both equations, we get\[xy=\dfrac{105}{64}\].
Hence, the correct answer is\[xy=\dfrac{105}{64}\].
Note: It’s necessary to consider the fact that the vertex of the parabola is the point at which the parabola acquires minimum or maximum value. We can’t solve this question without using this fact.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

