The locus of the vertices of the family of
parabolas\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a\]is
(a) \[xy=\dfrac{3}{4}\]
(b) \[xy=\dfrac{35}{16}\]
(c) \[xy=\dfrac{64}{105}\]
(d) \[xy=\dfrac{105}{64}\]
Last updated date: 20th Mar 2023
•
Total views: 308.1k
•
Views today: 2.86k
Answer
308.1k+ views
Hint: Vertex of the parabola is the point at which the parabola acquires minimum or maximum value. Differentiate the given equation of parabola and equate it to zero to find the vertex of parabola and then solve it to find the locus of vertices of parabola.
We have the equation of parabola as\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\]. To find the vertices of the given family of parabolas, we will differentiate the given equation of
parabola and equate it to zero as vertex of the parabola is the point at which the parabola acquires
minimum or maximum value.
Here, we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a\].
We can write\[y\]as a sum of three functions\[y=f\left( x \right)+g\left( x \right)+h\left( x
\right)\]such that\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x
\right)=\dfrac{{{a}^{2}}x}{2},h\left( x \right)=-2a\].
We will use sum rule for differentiation of functions which states that if\[y=f\left( x \right)+g\left( x
\right)+h\left( x \right)\], then we have\[\dfrac{dy}{dx}=\dfrac{df\left( x \right)}{dx}+\dfrac{dg\left( x
\right)}{dx}+\dfrac{dh\left( x \right)}{dx}\].
Substituting\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x \right)=\dfrac{{{a}^{2}}x}{2},h\left(
x \right)=-2a\]in the above equation, we have\[\dfrac{dy}{dx}=\dfrac{d\left(
\dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -
2a \right)}{dx}\]. \[...\left( 1 \right)\]
We know that differentiation of constant function is zero. Thus,\[\dfrac{d}{dx}h\left( x
\right)=\dfrac{d}{dx}(-2a)=0\] \[...\left( 2 \right)\]
We know that differentiation of any function of the
form\[y=m{{x}^{n}}\]is\[\dfrac{dy}{dx}=mn{{x}^{n-1}}\].
Substituting\[m=\dfrac{{{a}^{3}}}{3},n=2\]in the above equation, we have\[\dfrac{df\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}=\dfrac{2{{a}^{3}}x}{3}\]. \[...\left(
3 \right)\]
Substituting\[m=\dfrac{{{a}^{2}}}{2},n=1\]in the above equation, we have\[\dfrac{dg\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}=\dfrac{{{a}^{2}}}{2}\]. \[...\left( 4
\right)\]
Substituting equation\[\left( 2 \right)\],\[\left( 3 \right)\]and\[\left( 4 \right)\]in equation\[\left( 1
\right)\], we have\[\dfrac{dy}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3}
\right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -2a
\right)}{dx}=\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}\].
To find the maximum or minimum of a function, we want\[\dfrac{dy}{dx}=0\].
Thus, we have\[\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}=0\]
Solving the above equation, we have\[x=\dfrac{-3}{4a}\]
Substituting the value of\[x\]in the equation\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\], we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a=\dfrac{{{a}^{3}}{{\left( \dfrac{-
3}{4a} \right)}^{2}}}{3}+\dfrac{{{a}^{2}}\left( \dfrac{-3}{4a} \right)}{2}-2a\].
Solving the above equation, we get\[y=\dfrac{{{a}^{3}}}{3}\left( \dfrac{9}{16{{a}^{2}}}
\right)+\dfrac{{{a}^{2}}}{2}\left( \dfrac{-3}{4a} \right)-2a=\dfrac{3a}{16}-\dfrac{3a}{8}-2a\].
\[\Rightarrow y=\dfrac{3a-6a-32a}{16}=\dfrac{-35a}{16}\]
Hence, we have\[y=\dfrac{-35a}{16},x=\dfrac{-3}{4a}\].
Multiplying both equations, we get\[xy=\dfrac{105}{64}\].
Hence, the correct answer is\[xy=\dfrac{105}{64}\].
Note: It’s necessary to consider the fact that the vertex of the parabola is the point at which the parabola acquires minimum or maximum value. We can’t solve this question without using this fact.
We have the equation of parabola as\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\]. To find the vertices of the given family of parabolas, we will differentiate the given equation of
parabola and equate it to zero as vertex of the parabola is the point at which the parabola acquires
minimum or maximum value.
Here, we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a\].
We can write\[y\]as a sum of three functions\[y=f\left( x \right)+g\left( x \right)+h\left( x
\right)\]such that\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x
\right)=\dfrac{{{a}^{2}}x}{2},h\left( x \right)=-2a\].
We will use sum rule for differentiation of functions which states that if\[y=f\left( x \right)+g\left( x
\right)+h\left( x \right)\], then we have\[\dfrac{dy}{dx}=\dfrac{df\left( x \right)}{dx}+\dfrac{dg\left( x
\right)}{dx}+\dfrac{dh\left( x \right)}{dx}\].
Substituting\[f\left( x \right)=\dfrac{{{a}^{3}}{{x}^{2}}}{3},g\left( x \right)=\dfrac{{{a}^{2}}x}{2},h\left(
x \right)=-2a\]in the above equation, we have\[\dfrac{dy}{dx}=\dfrac{d\left(
\dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -
2a \right)}{dx}\]. \[...\left( 1 \right)\]
We know that differentiation of constant function is zero. Thus,\[\dfrac{d}{dx}h\left( x
\right)=\dfrac{d}{dx}(-2a)=0\] \[...\left( 2 \right)\]
We know that differentiation of any function of the
form\[y=m{{x}^{n}}\]is\[\dfrac{dy}{dx}=mn{{x}^{n-1}}\].
Substituting\[m=\dfrac{{{a}^{3}}}{3},n=2\]in the above equation, we have\[\dfrac{df\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3} \right)}{dx}=\dfrac{2{{a}^{3}}x}{3}\]. \[...\left(
3 \right)\]
Substituting\[m=\dfrac{{{a}^{2}}}{2},n=1\]in the above equation, we have\[\dfrac{dg\left( x
\right)}{dx}=\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}=\dfrac{{{a}^{2}}}{2}\]. \[...\left( 4
\right)\]
Substituting equation\[\left( 2 \right)\],\[\left( 3 \right)\]and\[\left( 4 \right)\]in equation\[\left( 1
\right)\], we have\[\dfrac{dy}{dx}=\dfrac{d\left( \dfrac{{{a}^{3}}{{x}^{2}}}{3}
\right)}{dx}+\dfrac{d\left( \dfrac{{{a}^{2}}x}{2} \right)}{dx}+\dfrac{d\left( -2a
\right)}{dx}=\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}\].
To find the maximum or minimum of a function, we want\[\dfrac{dy}{dx}=0\].
Thus, we have\[\dfrac{2{{a}^{3}}x}{3}+\dfrac{{{a}^{2}}}{2}=0\]
Solving the above equation, we have\[x=\dfrac{-3}{4a}\]
Substituting the value of\[x\]in the equation\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-
2a\], we have\[y=\dfrac{{{a}^{3}}{{x}^{2}}}{3}+\dfrac{{{a}^{2}}x}{2}-2a=\dfrac{{{a}^{3}}{{\left( \dfrac{-
3}{4a} \right)}^{2}}}{3}+\dfrac{{{a}^{2}}\left( \dfrac{-3}{4a} \right)}{2}-2a\].
Solving the above equation, we get\[y=\dfrac{{{a}^{3}}}{3}\left( \dfrac{9}{16{{a}^{2}}}
\right)+\dfrac{{{a}^{2}}}{2}\left( \dfrac{-3}{4a} \right)-2a=\dfrac{3a}{16}-\dfrac{3a}{8}-2a\].
\[\Rightarrow y=\dfrac{3a-6a-32a}{16}=\dfrac{-35a}{16}\]
Hence, we have\[y=\dfrac{-35a}{16},x=\dfrac{-3}{4a}\].
Multiplying both equations, we get\[xy=\dfrac{105}{64}\].
Hence, the correct answer is\[xy=\dfrac{105}{64}\].
Note: It’s necessary to consider the fact that the vertex of the parabola is the point at which the parabola acquires minimum or maximum value. We can’t solve this question without using this fact.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
