Answer
Verified
453.3k+ views
Hint: In the question, the linear density of the rod is given to us. The linear density of the rod, otherwise known as the mass density of the rod is the mass per unit area of the rod. In this question the linear density of the rod is a variable function, so we will have to integrate the function by taking a small element in order to get the total mass of the rod.
Complete step-by-step solution
Before we start solving the question that is given to us, let us take a look at all the parameters that are given to us in the above question
Length of the rod = l = 1.0 m
Linear Density = $\lambda =2kg/m+(\dfrac{2kg}{{{m}^{2}}})x$
Where x is the distance from one of its end
Now,
Let us consider a very small element of the rod of length dx at a distance x from one of the ends.
So,
The mass of the element dx will be,
$\Rightarrow dm=\lambda dx$
$\Rightarrow dm=(2+2x)dx$
Now,
Integrating on the both side
$\Rightarrow M=\int\limits_{0}^{1}{dm}=\int\limits_{0}^{1}{(2+2x)dx}$
Where, M is the weight of the whole rod
\[\Rightarrow M=[(2x+\dfrac{2{{x}^{2}}}{2})]_{0}^{1}\]
\[\Rightarrow M=3kg\]
Now, for the centre of mass
$\Rightarrow {{x}_{cm}}=\dfrac{\int{xdm}}{\int{dm}}$
$\Rightarrow {{x}_{cm}}=\dfrac{\int\limits_{0}^{1}{xdm}}{\int\limits_{o}^{q}{dm}}$
$\Rightarrow {{x}_{cm}}=\dfrac{\int\limits_{0}^{1}{x(2+2x)dx}}{\int\limits_{o}^{q}{(2+2x)dx}}$
\[\Rightarrow {{x}_{cm}}=[\dfrac{(\dfrac{2{{x}^{2}}}{2}+\dfrac{2{{x}^{3}}}{3})}{2x+\dfrac{2{{x}^{2}}}{2}}]_{0}^{1}\]
$\Rightarrow {{x}_{cm}}=\dfrac{1+\dfrac{2}{3}}{3}$
$\Rightarrow {{x}_{cm}}=\dfrac{5}{9}m$
So, the centre of mass of the rod will be at $\dfrac{5}{9}m$ from one of its end
So, the correct answer to this question will be Option – C, i.e., $\dfrac{5}{9}m$
Note: Keep in mind that there could be two answers to this question, depending on which end we are taking. The two answers will be $\dfrac{5}{9}m$ or $\dfrac{4}{9}m$. In this question, the center of mass is $\dfrac{5}{9}m$ away from the end with the smaller mass density.
Complete step-by-step solution
Before we start solving the question that is given to us, let us take a look at all the parameters that are given to us in the above question
Length of the rod = l = 1.0 m
Linear Density = $\lambda =2kg/m+(\dfrac{2kg}{{{m}^{2}}})x$
Where x is the distance from one of its end
Now,
Let us consider a very small element of the rod of length dx at a distance x from one of the ends.
So,
The mass of the element dx will be,
$\Rightarrow dm=\lambda dx$
$\Rightarrow dm=(2+2x)dx$
Now,
Integrating on the both side
$\Rightarrow M=\int\limits_{0}^{1}{dm}=\int\limits_{0}^{1}{(2+2x)dx}$
Where, M is the weight of the whole rod
\[\Rightarrow M=[(2x+\dfrac{2{{x}^{2}}}{2})]_{0}^{1}\]
\[\Rightarrow M=3kg\]
Now, for the centre of mass
$\Rightarrow {{x}_{cm}}=\dfrac{\int{xdm}}{\int{dm}}$
$\Rightarrow {{x}_{cm}}=\dfrac{\int\limits_{0}^{1}{xdm}}{\int\limits_{o}^{q}{dm}}$
$\Rightarrow {{x}_{cm}}=\dfrac{\int\limits_{0}^{1}{x(2+2x)dx}}{\int\limits_{o}^{q}{(2+2x)dx}}$
\[\Rightarrow {{x}_{cm}}=[\dfrac{(\dfrac{2{{x}^{2}}}{2}+\dfrac{2{{x}^{3}}}{3})}{2x+\dfrac{2{{x}^{2}}}{2}}]_{0}^{1}\]
$\Rightarrow {{x}_{cm}}=\dfrac{1+\dfrac{2}{3}}{3}$
$\Rightarrow {{x}_{cm}}=\dfrac{5}{9}m$
So, the centre of mass of the rod will be at $\dfrac{5}{9}m$ from one of its end
So, the correct answer to this question will be Option – C, i.e., $\dfrac{5}{9}m$
Note: Keep in mind that there could be two answers to this question, depending on which end we are taking. The two answers will be $\dfrac{5}{9}m$ or $\dfrac{4}{9}m$. In this question, the center of mass is $\dfrac{5}{9}m$ away from the end with the smaller mass density.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths