The line \[\dfrac{x}{a}+\dfrac{y}{b}=1\] meets the axis of x and y at A and B respectively and the line \[y=x\] at C so that area of the triangle AOC is twice the area of the triangle BOC, O being the origin, then one of the position of C is:
(a) \[\left( a,a \right)\]
(b) \[\left( \dfrac{2a}{3},\dfrac{2a}{3} \right)\]
(c) \[\left( \dfrac{b}{3},\dfrac{b}{3} \right)\]
(d) \[\left( \dfrac{2b}{3},\dfrac{2b}{3} \right)\]
Answer
Verified
506.1k+ views
Hint: Find the coordinates where the line \[\dfrac{x}{a}+\dfrac{y}{b}=1\] meets the coordinate axis. Draw a suitable diagram with these points and apply the area condition mentioned in the question. Area of a triangle can be found using \[\dfrac{1}{2}\times base\times height\].
Given that the line \[\dfrac{x}{a}+\dfrac{y}{b}=1\]meets the x axis at A and y axis at B.
Now, for point A:
Let us put \[y=0\], in the line \[\dfrac{x}{a}+\dfrac{y}{b}=1\]
\[\dfrac{x}{a}+\dfrac{0}{b}=1\]
\[x=a\]
So, Point A is \[\left( a,0 \right)\].
For point B:
Let us put \[x=0\]in the line \[\dfrac{x}{a}+\dfrac{y}{b}=1\]
\[\dfrac{0}{a}+\dfrac{y}{b}=1\]
\[y=b\]
So, Point B is \[\left( 0,b \right)\].
Therefore, we can plot the below diagram with the data we obtained.
Now let us assume point C as \[\left( m,m \right)\]since it lies on the line \[x=y\].
As mentioned in the question we have:
(Area of \[\vartriangle AOC\]) = 2(Area of \[\vartriangle BOC\])
\[\dfrac{1}{2}\times \left( OA \right)\left( CD \right)=2\times \dfrac{1}{2}\left( OB \right)\left( CE \right)\]
Since, area of triangle = \[\dfrac{1}{2}\times base\times height\].
We have:
\[OA=a\]
\[CD=m\]
\[OB=b\]
\[CE=m\]
Substituting the above values in \[\dfrac{1}{2}\left( a \right)\left( m \right)=\left( b \right)\left( m \right)\], we will have:
\[\therefore \dfrac{1}{2}\left( a \right)\left( m \right)=\left( b \right)\left( m \right)\]
\[a=2b\]
Now let us substitute \[a=2b\] in the line \[\dfrac{x}{a}+\dfrac{y}{b}=1\]
\[\dfrac{x}{2a}+\dfrac{y}{b}=1...........(1)\]
Substituting \[c\left( m,m \right)\] in the equation (1), we will have:
\[\dfrac{m}{2b}+\dfrac{m}{b}=1\]
\[3m=2b\]
\[m=\dfrac{2b}{3}\]
Therefore, the coordinates of C can be \[\left( \dfrac{2b}{3},\dfrac{2b}{3} \right)\].
Hence option D is the correct answer.
Note: We can also find the are of the triangle using the formula \[\dfrac{1}{2}\left| {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right|\] when the three vertices of the triangle are known to us . But we adopt the formula of \[\dfrac{1}{2}\times base\times height\] to save time.
Given that the line \[\dfrac{x}{a}+\dfrac{y}{b}=1\]meets the x axis at A and y axis at B.
Now, for point A:
Let us put \[y=0\], in the line \[\dfrac{x}{a}+\dfrac{y}{b}=1\]
\[\dfrac{x}{a}+\dfrac{0}{b}=1\]
\[x=a\]
So, Point A is \[\left( a,0 \right)\].
For point B:
Let us put \[x=0\]in the line \[\dfrac{x}{a}+\dfrac{y}{b}=1\]
\[\dfrac{0}{a}+\dfrac{y}{b}=1\]
\[y=b\]
So, Point B is \[\left( 0,b \right)\].
Therefore, we can plot the below diagram with the data we obtained.
Now let us assume point C as \[\left( m,m \right)\]since it lies on the line \[x=y\].
As mentioned in the question we have:
(Area of \[\vartriangle AOC\]) = 2(Area of \[\vartriangle BOC\])
\[\dfrac{1}{2}\times \left( OA \right)\left( CD \right)=2\times \dfrac{1}{2}\left( OB \right)\left( CE \right)\]
Since, area of triangle = \[\dfrac{1}{2}\times base\times height\].
We have:
\[OA=a\]
\[CD=m\]
\[OB=b\]
\[CE=m\]
Substituting the above values in \[\dfrac{1}{2}\left( a \right)\left( m \right)=\left( b \right)\left( m \right)\], we will have:
\[\therefore \dfrac{1}{2}\left( a \right)\left( m \right)=\left( b \right)\left( m \right)\]
\[a=2b\]
Now let us substitute \[a=2b\] in the line \[\dfrac{x}{a}+\dfrac{y}{b}=1\]
\[\dfrac{x}{2a}+\dfrac{y}{b}=1...........(1)\]
Substituting \[c\left( m,m \right)\] in the equation (1), we will have:
\[\dfrac{m}{2b}+\dfrac{m}{b}=1\]
\[3m=2b\]
\[m=\dfrac{2b}{3}\]
Therefore, the coordinates of C can be \[\left( \dfrac{2b}{3},\dfrac{2b}{3} \right)\].
Hence option D is the correct answer.
Note: We can also find the are of the triangle using the formula \[\dfrac{1}{2}\left| {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right|\] when the three vertices of the triangle are known to us . But we adopt the formula of \[\dfrac{1}{2}\times base\times height\] to save time.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE
Lassaignes test for the detection of nitrogen will class 11 chemistry CBSE
The type of inflorescence in Tulsi a Cyanthium b Hypanthodium class 11 biology CBSE