
The length of the chord intercepted by the parabola ${y^2} = 4x$ on the straight line $x + y = 1$ is
(a) $4$
(b) $4\sqrt 2 $
(c) $8$
(d) $8\sqrt 2 $
Answer
580.2k+ views
Hint:First we have to find the intersection point of chord and parabola . Put the value of $x$ or $y$ from the equation of chord to the equation of parabola and solve the quadratic equation by which we get two point of intersection and calculate the distance between the point
Complete step-by-step answer:
In this case firstly we have to find the point of intersection of chord and parabola ,
It is simple done by the solving the equation of parabola ${y^2} = 4x$ and chord $x + y = 1$
or $x = 1 - y$ , Putting the value of $x$ in equation of parabola ;
i.e. ${y^2} = 4\left( {1 - y} \right)$
by rearranging
${y^2} + 4y - 4$ = $0$
Now we have to solve this quadratic equation
\[a = 1\]
$b = 4$
$c = - 4$
therefore ,
$y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
by putting the values
$y = \dfrac{{ - 4 \pm \sqrt {{{\left( 4 \right)}^2} - 4 \times 1 \times \left( { - 4} \right)} }}{{2 \times 1}}$
After further solving ;
$y = \dfrac{{ - 4 \pm \sqrt {32} }}{2}$
$y = - 2 \pm 2\sqrt 2 $
It means that $y = - 2 + 2\sqrt 2 , - 2 - 2\sqrt 2 $
Now we have to put these $y$ values in equation of chord to get $x$ ;
Equation of chord is $x = 1 - y$ ;
therefore $x = 1 - ( - 2 + 2\sqrt 2 )$ or $x = 1 - ( - 2 - 2\sqrt 2 )$
we get $x = 3 - 2\sqrt 2 ,3 + 2\sqrt 2 $
So the point of intersection is $(3 - 2\sqrt 2 , - 2 + 2\sqrt 2 )$ and $(3 + 2\sqrt 2 , - 2 - 2\sqrt 2 )$
Now we have to calculate distance between them by using distance formula i.e. $\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
= $\sqrt {{{(3 + 2\sqrt 2 - 3 + 2\sqrt 2 )}^2} + {{( - 2 - 2\sqrt 2 + 2 - 2\sqrt 2 )}^2}} $
After solving we get
$ = \sqrt {4 \times 4 \times 2 + 4 \times 4 \times 2} $
$ = \sqrt {64} $
$ = 8 $
So,the length of the chord intercepted by the parabola ${y^2} = 4x$ on the straight line $x + y = 1$ is $8$
So, the correct answer is “Option C”.
Note:You can also simplify this question by putting the value of $y$ in the equation of parabola and get the $x$.If we get only one point of intersection then the chord is tangent of the parabola .
Complete step-by-step answer:
In this case firstly we have to find the point of intersection of chord and parabola ,
It is simple done by the solving the equation of parabola ${y^2} = 4x$ and chord $x + y = 1$
or $x = 1 - y$ , Putting the value of $x$ in equation of parabola ;
i.e. ${y^2} = 4\left( {1 - y} \right)$
by rearranging
${y^2} + 4y - 4$ = $0$
Now we have to solve this quadratic equation
\[a = 1\]
$b = 4$
$c = - 4$
therefore ,
$y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
by putting the values
$y = \dfrac{{ - 4 \pm \sqrt {{{\left( 4 \right)}^2} - 4 \times 1 \times \left( { - 4} \right)} }}{{2 \times 1}}$
After further solving ;
$y = \dfrac{{ - 4 \pm \sqrt {32} }}{2}$
$y = - 2 \pm 2\sqrt 2 $
It means that $y = - 2 + 2\sqrt 2 , - 2 - 2\sqrt 2 $
Now we have to put these $y$ values in equation of chord to get $x$ ;
Equation of chord is $x = 1 - y$ ;
therefore $x = 1 - ( - 2 + 2\sqrt 2 )$ or $x = 1 - ( - 2 - 2\sqrt 2 )$
we get $x = 3 - 2\sqrt 2 ,3 + 2\sqrt 2 $
So the point of intersection is $(3 - 2\sqrt 2 , - 2 + 2\sqrt 2 )$ and $(3 + 2\sqrt 2 , - 2 - 2\sqrt 2 )$
Now we have to calculate distance between them by using distance formula i.e. $\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
= $\sqrt {{{(3 + 2\sqrt 2 - 3 + 2\sqrt 2 )}^2} + {{( - 2 - 2\sqrt 2 + 2 - 2\sqrt 2 )}^2}} $
After solving we get
$ = \sqrt {4 \times 4 \times 2 + 4 \times 4 \times 2} $
$ = \sqrt {64} $
$ = 8 $
So,the length of the chord intercepted by the parabola ${y^2} = 4x$ on the straight line $x + y = 1$ is $8$
So, the correct answer is “Option C”.
Note:You can also simplify this question by putting the value of $y$ in the equation of parabola and get the $x$.If we get only one point of intersection then the chord is tangent of the parabola .
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

