The length of perpendicular from the point \[(a\cos \alpha ,a\sin \alpha )\]upon the straight line \[y = x\tan \alpha + C,c > 0\]is.
A. \[a\cos \alpha \]
B. \[c{\sin ^2}x\]
C. \[c{\sec ^2}x\]
D. \[c{\cos ^2}x\]
Answer
Verified
466.5k+ views
Hint: Perpendicular distance say (d) from a given point \[P({x_1},{y_1})\]to a line \[Ax + By + c = 0\] is given as:
\[ \Rightarrow \dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}\]. Use this formula to get the answer.
Complete step-by-step answer:
The given point is P\[(a\cos \alpha ,a\sin \alpha )\].
And our equation of line is\[y = x\tan \alpha + C\].
Perpendicular distance say (d) from a given point\[P({x_1},{y_1})\]to a line \[Ax + By + c = 0\] is given as:
\[ \Rightarrow \dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}\].
\[
\Rightarrow d = \dfrac{{|\left( { - \tan \alpha } \right)(a\cos \alpha ) + (1)(a\sin \alpha ) + c|}}{{\sqrt {{{\left( { - \tan \alpha } \right)}^2} + {{(1)}^2}} }} \\
\Rightarrow d = \dfrac{{|\left( { - \dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)(a\cos \alpha ) + (a\sin \alpha ) + c|}}{{\sqrt {1 + {{\tan }^2}\alpha } }} \\
\Rightarrow d = \dfrac{{|( - a\sin \alpha ) + (a\sin \alpha ) + c|}}{{\sqrt {{{\sec }^2}\alpha } }} \\
\Rightarrow d = \dfrac{c}{{\sec \alpha }} \\
\Rightarrow d = c\cos \alpha \\
\]
None of the above options is correct.
The required perpendicular distance=\[c\cos \alpha \].
Note: Working formula to solve such questions:
First simplify the equation of straight line.
Then put the points in our given straight line.
Then put the values in \[\dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}\]
Where, \[Ax + By + C = 0\] is the equation of straight line and \[({x_1},{y_1})\] are the points from which perpendicular distance is to be found.
\[ \Rightarrow \dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}\]. Use this formula to get the answer.
Complete step-by-step answer:
The given point is P\[(a\cos \alpha ,a\sin \alpha )\].
And our equation of line is\[y = x\tan \alpha + C\].
Perpendicular distance say (d) from a given point\[P({x_1},{y_1})\]to a line \[Ax + By + c = 0\] is given as:
\[ \Rightarrow \dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}\].
\[
\Rightarrow d = \dfrac{{|\left( { - \tan \alpha } \right)(a\cos \alpha ) + (1)(a\sin \alpha ) + c|}}{{\sqrt {{{\left( { - \tan \alpha } \right)}^2} + {{(1)}^2}} }} \\
\Rightarrow d = \dfrac{{|\left( { - \dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)(a\cos \alpha ) + (a\sin \alpha ) + c|}}{{\sqrt {1 + {{\tan }^2}\alpha } }} \\
\Rightarrow d = \dfrac{{|( - a\sin \alpha ) + (a\sin \alpha ) + c|}}{{\sqrt {{{\sec }^2}\alpha } }} \\
\Rightarrow d = \dfrac{c}{{\sec \alpha }} \\
\Rightarrow d = c\cos \alpha \\
\]
None of the above options is correct.
The required perpendicular distance=\[c\cos \alpha \].
Note: Working formula to solve such questions:
First simplify the equation of straight line.
Then put the points in our given straight line.
Then put the values in \[\dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}\]
Where, \[Ax + By + C = 0\] is the equation of straight line and \[({x_1},{y_1})\] are the points from which perpendicular distance is to be found.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
What will happen when any type of copper vessel is class 11 chemistry CBSE
The number of structural isomers possible for C4H8 class 11 chemistry CBSE
The number of vertebrae in rabbit is a 40 b 33 c 44 class 11 biology CBSE
Why is the wurtz reaction not preferred for the preparation class 11 chemistry CBSE