The last digit of the number ${7^{886}}$is
$
a.{\text{ 9}} \\
b.{\text{ 7}} \\
c.{\text{ 3}} \\
d.{\text{ 1}} \\
$
Answer
Verified
508.8k+ views
Hint- last digit means we need to check the unit digit in ${n^x}$.For finding the unit digit number we must know the concept of cyclicity of power to a number.
For finding the last digit of the number, we will have to check unit digit in ${n^x}$
So, check the unit digit in ${7^{886}}$
${7^1} = 7$
So, the unit digit is 7.
${7^2} = 49$
So, the unit digit is 9.
${7^3} = 343$
So, the unit digit is 3.
${7^4} = 2401$
So, the unit digit is 1.
${7^5} = 16807$
So, the unit digit is 7.
${7^6} = 117649$
So, the unit digit is 9.
Now we can see that after 4 steps the unit digits are repeating.
Now in the given number the power of 7 is 886.
So divide 886 by 4
$ \Rightarrow \frac{{886}}{4} = 221\frac{2}{4}...............\left( 1 \right)$
Now we are generalizing the number of form and the corresponding unit digit can be written as
$
4n = 1 \\
4n + 1 = 7 \\
4n + 2 = 9 \\
4n + 3 = 3 \\
$
Now as we see from equation (1) that the power of 7 which is 886 is of form
$
886 = 221\left( 4 \right) + 2 \\
{\text{i}}{\text{.e}}{\text{. }}4n + 2 \\
$
Hence the unit digit would be 9.
So, the correct answer is option (a).
Note- In such types of questions if we asked to find out the last digit of some ${n^x}$number, first we have to check the unit digit and find after how many steps it gets repeated, then divide the power of number with the number of steps after which the unit digit is repeating then generalize the number as above we will get the required last digit of the given number.
For finding the last digit of the number, we will have to check unit digit in ${n^x}$
So, check the unit digit in ${7^{886}}$
${7^1} = 7$
So, the unit digit is 7.
${7^2} = 49$
So, the unit digit is 9.
${7^3} = 343$
So, the unit digit is 3.
${7^4} = 2401$
So, the unit digit is 1.
${7^5} = 16807$
So, the unit digit is 7.
${7^6} = 117649$
So, the unit digit is 9.
Now we can see that after 4 steps the unit digits are repeating.
Now in the given number the power of 7 is 886.
So divide 886 by 4
$ \Rightarrow \frac{{886}}{4} = 221\frac{2}{4}...............\left( 1 \right)$
Now we are generalizing the number of form and the corresponding unit digit can be written as
$
4n = 1 \\
4n + 1 = 7 \\
4n + 2 = 9 \\
4n + 3 = 3 \\
$
Now as we see from equation (1) that the power of 7 which is 886 is of form
$
886 = 221\left( 4 \right) + 2 \\
{\text{i}}{\text{.e}}{\text{. }}4n + 2 \\
$
Hence the unit digit would be 9.
So, the correct answer is option (a).
Note- In such types of questions if we asked to find out the last digit of some ${n^x}$number, first we have to check the unit digit and find after how many steps it gets repeated, then divide the power of number with the number of steps after which the unit digit is repeating then generalize the number as above we will get the required last digit of the given number.
Recently Updated Pages
Class 8 Question and Answer - Your Ultimate Solutions Guide
Master Class 8 Social Science: Engaging Questions & Answers for Success
Master Class 8 Maths: Engaging Questions & Answers for Success
Master Class 8 English: Engaging Questions & Answers for Success
Master Class 8 Science: Engaging Questions & Answers for Success
Identify how many lines of symmetry drawn are there class 8 maths CBSE
Trending doubts
How is the Lok Sabha more powerful than the Rajya class 8 social science CBSE
Write a letter to your friend telling himher how you class 8 english CBSE
Write the following in HinduArabic numerals XXIX class 8 maths CBSE
The strategy of Divide and rule was adopted by A Lord class 8 social science CBSE
When will we use have had and had had in the sente class 8 english CBSE
Write a short biography of Dr APJ Abdul Kalam under class 8 english CBSE