Answer

Verified

449.1k+ views

Hint: We will first solve the given quadratic equation by the quadratic formula and then we will check the given options that which integral value satisfies the given quadratic equation.

Complete step-by-step answer-

The quadratic equation is \[6{x^2} - 7x + 2 = 0\]. Now, we will find the roots of this equation. The roots are the values of $x$ that satisfy the given quadratic equation.

Now, we will find roots through discriminant formula which is also known as Sridharacharya formula. Discriminant formula for finding roots of a quadratic equation \[a{x^2} + bx + c = 0\] is,

\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\], where \[a\] represents the coefficient of \[{x^2}\], \[b\] represents the coefficient of $x$ and \[c\] represents the constant term. Now, solving the given quadratic equation using this formula,

Where \[a\] = 6, \[b\] = -7, \[c\] = 2. On solving,

\[ \Rightarrow \] \[x = \dfrac{{ - ( - 7) \pm \sqrt {{{( - 7)}^2} - 4(6)(2)} }}{{2(6)}}\]

\[ \Rightarrow \] \[x = \dfrac{{ - ( - 7) \pm \sqrt {49 - 48} }}{{12}}\]

\[ \Rightarrow \] \[x = \dfrac{{7 \pm 1}}{{12}}\]

Now, first taking the positive sign, we get

\[x = \dfrac{{7 + 1}}{{12}} = \dfrac{8}{{12}} = \dfrac{2}{3}\]

Taking the negative sign, we get

\[x = \dfrac{{7 - 1}}{{12}} = \dfrac{6}{{12}} = \dfrac{1}{2}\]

So, the values of $x$ satisfying the given quadratic equation are \[\dfrac{2}{3}\]and \[\dfrac{1}{2}\]. Now, looking at the options given we can clearly see that there is no value which satisfies the given equation.

So, the correct answer is none i.e. option (D).

Note: Another easy method for finding the roots is the middle – term split method. Although the middle – term split method is easy and used in the majority of the questions but, in difficult questions discriminant formula is used to find the roots easily. In such types of questions applying the formula correctly will give you a correct answer free of errors.

Complete step-by-step answer-

The quadratic equation is \[6{x^2} - 7x + 2 = 0\]. Now, we will find the roots of this equation. The roots are the values of $x$ that satisfy the given quadratic equation.

Now, we will find roots through discriminant formula which is also known as Sridharacharya formula. Discriminant formula for finding roots of a quadratic equation \[a{x^2} + bx + c = 0\] is,

\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\], where \[a\] represents the coefficient of \[{x^2}\], \[b\] represents the coefficient of $x$ and \[c\] represents the constant term. Now, solving the given quadratic equation using this formula,

Where \[a\] = 6, \[b\] = -7, \[c\] = 2. On solving,

\[ \Rightarrow \] \[x = \dfrac{{ - ( - 7) \pm \sqrt {{{( - 7)}^2} - 4(6)(2)} }}{{2(6)}}\]

\[ \Rightarrow \] \[x = \dfrac{{ - ( - 7) \pm \sqrt {49 - 48} }}{{12}}\]

\[ \Rightarrow \] \[x = \dfrac{{7 \pm 1}}{{12}}\]

Now, first taking the positive sign, we get

\[x = \dfrac{{7 + 1}}{{12}} = \dfrac{8}{{12}} = \dfrac{2}{3}\]

Taking the negative sign, we get

\[x = \dfrac{{7 - 1}}{{12}} = \dfrac{6}{{12}} = \dfrac{1}{2}\]

So, the values of $x$ satisfying the given quadratic equation are \[\dfrac{2}{3}\]and \[\dfrac{1}{2}\]. Now, looking at the options given we can clearly see that there is no value which satisfies the given equation.

So, the correct answer is none i.e. option (D).

Note: Another easy method for finding the roots is the middle – term split method. Although the middle – term split method is easy and used in the majority of the questions but, in difficult questions discriminant formula is used to find the roots easily. In such types of questions applying the formula correctly will give you a correct answer free of errors.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE