
What will be the integral value of $x$ satisfying \[6{x^2} - 7x + 2 = 0\] ?
A. -2
B. -3
C. 2
D. none
Answer
607.2k+ views
Hint: We will first solve the given quadratic equation by the quadratic formula and then we will check the given options that which integral value satisfies the given quadratic equation.
Complete step-by-step answer-
The quadratic equation is \[6{x^2} - 7x + 2 = 0\]. Now, we will find the roots of this equation. The roots are the values of $x$ that satisfy the given quadratic equation.
Now, we will find roots through discriminant formula which is also known as Sridharacharya formula. Discriminant formula for finding roots of a quadratic equation \[a{x^2} + bx + c = 0\] is,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\], where \[a\] represents the coefficient of \[{x^2}\], \[b\] represents the coefficient of $x$ and \[c\] represents the constant term. Now, solving the given quadratic equation using this formula,
Where \[a\] = 6, \[b\] = -7, \[c\] = 2. On solving,
\[ \Rightarrow \] \[x = \dfrac{{ - ( - 7) \pm \sqrt {{{( - 7)}^2} - 4(6)(2)} }}{{2(6)}}\]
\[ \Rightarrow \] \[x = \dfrac{{ - ( - 7) \pm \sqrt {49 - 48} }}{{12}}\]
\[ \Rightarrow \] \[x = \dfrac{{7 \pm 1}}{{12}}\]
Now, first taking the positive sign, we get
\[x = \dfrac{{7 + 1}}{{12}} = \dfrac{8}{{12}} = \dfrac{2}{3}\]
Taking the negative sign, we get
\[x = \dfrac{{7 - 1}}{{12}} = \dfrac{6}{{12}} = \dfrac{1}{2}\]
So, the values of $x$ satisfying the given quadratic equation are \[\dfrac{2}{3}\]and \[\dfrac{1}{2}\]. Now, looking at the options given we can clearly see that there is no value which satisfies the given equation.
So, the correct answer is none i.e. option (D).
Note: Another easy method for finding the roots is the middle – term split method. Although the middle – term split method is easy and used in the majority of the questions but, in difficult questions discriminant formula is used to find the roots easily. In such types of questions applying the formula correctly will give you a correct answer free of errors.
Complete step-by-step answer-
The quadratic equation is \[6{x^2} - 7x + 2 = 0\]. Now, we will find the roots of this equation. The roots are the values of $x$ that satisfy the given quadratic equation.
Now, we will find roots through discriminant formula which is also known as Sridharacharya formula. Discriminant formula for finding roots of a quadratic equation \[a{x^2} + bx + c = 0\] is,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\], where \[a\] represents the coefficient of \[{x^2}\], \[b\] represents the coefficient of $x$ and \[c\] represents the constant term. Now, solving the given quadratic equation using this formula,
Where \[a\] = 6, \[b\] = -7, \[c\] = 2. On solving,
\[ \Rightarrow \] \[x = \dfrac{{ - ( - 7) \pm \sqrt {{{( - 7)}^2} - 4(6)(2)} }}{{2(6)}}\]
\[ \Rightarrow \] \[x = \dfrac{{ - ( - 7) \pm \sqrt {49 - 48} }}{{12}}\]
\[ \Rightarrow \] \[x = \dfrac{{7 \pm 1}}{{12}}\]
Now, first taking the positive sign, we get
\[x = \dfrac{{7 + 1}}{{12}} = \dfrac{8}{{12}} = \dfrac{2}{3}\]
Taking the negative sign, we get
\[x = \dfrac{{7 - 1}}{{12}} = \dfrac{6}{{12}} = \dfrac{1}{2}\]
So, the values of $x$ satisfying the given quadratic equation are \[\dfrac{2}{3}\]and \[\dfrac{1}{2}\]. Now, looking at the options given we can clearly see that there is no value which satisfies the given equation.
So, the correct answer is none i.e. option (D).
Note: Another easy method for finding the roots is the middle – term split method. Although the middle – term split method is easy and used in the majority of the questions but, in difficult questions discriminant formula is used to find the roots easily. In such types of questions applying the formula correctly will give you a correct answer free of errors.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

