The income of a person is Rs.300,000 in the first year and he receives an increase of Rs.10000 to his income per year for the next 19 years. Find the total amount he received in 20 years.
Answer
362.4k+ views
Hint: Take the income of the person in the first year as ‘a’ and the amount by which it increases every year as ‘d’. Now the salary of each year would form A.P. Find the total amount he received in 20 years by using the formula for the sum of n terms of A.P that is \[{{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d\right]\]
Complete step by step solution:
Here we are given that the income of a person is Rs.300,000 in the first year and it increases every year for the next 19 years by Rs.10000. We have to find the total amount he received in 20 years.
Let us consider the income of the person in the first year as
a = Rs.300,000
Also, let us consider the amount by which the income is getting increased every year as d = Rs.10000.
So, we get the income of a man in the first year = a.
Also, the income of a man in the second year = a + d.
Similarly, the income of a man in the third year = a + 2d.
This would continue for a total of 20 years.
So, we get the series of income of a man in each year as
a, a + d, a + 2d, a + 3d………
Here, we can see the income of a man in each year in A.P with a = Rs.300,000 as first term and d = Rs.10000 as a common difference.
We know that sum of n terms of A.P \[=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]....\left( i \right)\]
Now, we have to find the total amount he received in 20 years. So, we have to add his income from the first year to the 20 th year. As we know that his income is in A.P. So, we get
Total amount received by man in 20 years = Sum of 20 terms of A.P \[\left( {{S}_{20}} \right)....\left( ii \right)\]
By substituting the value of n = 20, a = 300,000 and d = 10000 in equation (i), we get,
Sum of 20 terms of A.P \[=\left( {{S}_{20}} \right)=\dfrac{20}{2}\left[ 2\times \left( 300000 \right)+\left(
20-1 \right)\left( 10000 \right) \right]\]
\[{{S}_{20}}=10\left( 600000+190000 \right)\]
\[=10\left( 790000 \right)\]
\[=79,00,000\]
By substituting the value of \[{{S}_{20}}\] in equation (ii), we get,
Total amount received by man in 20 years = Rs.7900000
So, we get the total amount received by man in 20 years as Rs 79 lakhs
Note: Here, some students try to manually find the total amount by adding the income of each year one by one. But this method is very lengthy and can even give wrong results if there would be even a slight mistake in calculation. So students must identify the series in these types of questions and accordingly use the formula of the sum of n terms.
Complete step by step solution:
Here we are given that the income of a person is Rs.300,000 in the first year and it increases every year for the next 19 years by Rs.10000. We have to find the total amount he received in 20 years.
Let us consider the income of the person in the first year as
a = Rs.300,000
Also, let us consider the amount by which the income is getting increased every year as d = Rs.10000.
So, we get the income of a man in the first year = a.
Also, the income of a man in the second year = a + d.
Similarly, the income of a man in the third year = a + 2d.
This would continue for a total of 20 years.
So, we get the series of income of a man in each year as
a, a + d, a + 2d, a + 3d………
Here, we can see the income of a man in each year in A.P with a = Rs.300,000 as first term and d = Rs.10000 as a common difference.
We know that sum of n terms of A.P \[=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]....\left( i \right)\]
Now, we have to find the total amount he received in 20 years. So, we have to add his income from the first year to the 20 th year. As we know that his income is in A.P. So, we get
Total amount received by man in 20 years = Sum of 20 terms of A.P \[\left( {{S}_{20}} \right)....\left( ii \right)\]
By substituting the value of n = 20, a = 300,000 and d = 10000 in equation (i), we get,
Sum of 20 terms of A.P \[=\left( {{S}_{20}} \right)=\dfrac{20}{2}\left[ 2\times \left( 300000 \right)+\left(
20-1 \right)\left( 10000 \right) \right]\]
\[{{S}_{20}}=10\left( 600000+190000 \right)\]
\[=10\left( 790000 \right)\]
\[=79,00,000\]
By substituting the value of \[{{S}_{20}}\] in equation (ii), we get,
Total amount received by man in 20 years = Rs.7900000
So, we get the total amount received by man in 20 years as Rs 79 lakhs
Note: Here, some students try to manually find the total amount by adding the income of each year one by one. But this method is very lengthy and can even give wrong results if there would be even a slight mistake in calculation. So students must identify the series in these types of questions and accordingly use the formula of the sum of n terms.
Last updated date: 26th Sep 2023
•
Total views: 362.4k
•
Views today: 6.62k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Why are resources distributed unequally over the e class 7 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

What is the past tense of read class 10 english CBSE
