
The identity \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\] can be easily verified by expanding the right hand side.
Using the above identity (or otherwise) answer the following:
Factorize the expression:
\[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\]
(a) \[\left( {p + q + r} \right)\left( {{p^2} + {q^2} + {r^2} - 2\left( {pq + qr + pq} \right)} \right)\]
(b) \[\left( {p + q + r} \right)\left( {2{p^2} + 2{q^2} + 2{r^2} - 3\left( {pq + qr + rp} \right)} \right)\]
(c) \[3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\]
(d) None of these
Answer
553.8k+ views
Hint: Here, we need to compute the given expression. We will rewrite the given algebraic identity taking the sum of the numbers as zero. Then, we will simplify the expression using the identity to find the required value of the given expression.
Formula Used:
\[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\]
Complete step-by-step answer:
The given algebraic identity is \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\].
Adding \[3abc\] to both sides of the algebraic identity, we get
\[\Rightarrow {a^3} + {b^3} + {c^3} - 3abc + 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc \\
\Rightarrow {a^3} + {b^3} + {c^3} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc \\ \]
Suppose that the sum of the three numbers is 0.
Therefore, we have
\[a + b + c = 0\]
Substituting \[a + b + c = 0\] in the identity, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 0\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc\]
We know that when any number or expression is multiplied by 0, the result is 0.
Therefore, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 0 + 3abc\]
Adding the terms, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 3abc\]
Now, we will find the value of the given expression.
The given expression is \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\].
Let \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\].
We will check the sum of these numbers.
Substituting \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\] in the expression \[a + b + c\], we get
\[ \Rightarrow a + b + c = p + 2q - 3r + q + 2r - 3p + r + 2p - 3q\]
Adding the like terms in the expression, we get
\[ \Rightarrow a + b + c = 3p + 3q - 3r + 3r - 3p - 3q\]
Pairing the terms of the expression, we get
\[ \Rightarrow a + b + c = \left( {3p - 3p} \right) + \left( {3q - 3q} \right) + \left( {3r - 3r} \right)\]
Subtracting the terms in the parentheses, we get
\[ \Rightarrow a + b + c = 0 + 0 + 0\]
Therefore, we get
\[ \Rightarrow a + b + c = 0\]
We have proved using the algebraic identity that if \[a + b + c = 0\], then \[{a^3} + {b^3} + {c^3} = 3abc\].
Since \[a + b + c = \left( {p + 2q - 3r} \right) + \left( {q + 2r - 3p} \right) + \left( {r + 2p - 3q} \right) = 0\], we can use \[{a^3} + {b^3} + {c^3} = 3abc\].
Substituting \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\] in the equation \[{a^3} + {b^3} + {c^3} = 3abc\], we get
\[ \Rightarrow {\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3} = 3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\]
Therefore, we get the value of the expression \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\] as \[3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\].
Thus, the correct option is option (c).
Note: We supposed that the sum of the three numbers in the identity is 0. This is because if the sum of the three numbers is 0, then the right hand side is equal to 0. The sum of the three numbers given in the expression \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\] is 0. By rewriting the identity when the sum of the three numbers \[a + b + c = 0\], we have formed a simplified identity to find the value of \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\].
Formula Used:
\[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\]
Complete step-by-step answer:
The given algebraic identity is \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\].
Adding \[3abc\] to both sides of the algebraic identity, we get
\[\Rightarrow {a^3} + {b^3} + {c^3} - 3abc + 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc \\
\Rightarrow {a^3} + {b^3} + {c^3} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc \\ \]
Suppose that the sum of the three numbers is 0.
Therefore, we have
\[a + b + c = 0\]
Substituting \[a + b + c = 0\] in the identity, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 0\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc\]
We know that when any number or expression is multiplied by 0, the result is 0.
Therefore, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 0 + 3abc\]
Adding the terms, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 3abc\]
Now, we will find the value of the given expression.
The given expression is \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\].
Let \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\].
We will check the sum of these numbers.
Substituting \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\] in the expression \[a + b + c\], we get
\[ \Rightarrow a + b + c = p + 2q - 3r + q + 2r - 3p + r + 2p - 3q\]
Adding the like terms in the expression, we get
\[ \Rightarrow a + b + c = 3p + 3q - 3r + 3r - 3p - 3q\]
Pairing the terms of the expression, we get
\[ \Rightarrow a + b + c = \left( {3p - 3p} \right) + \left( {3q - 3q} \right) + \left( {3r - 3r} \right)\]
Subtracting the terms in the parentheses, we get
\[ \Rightarrow a + b + c = 0 + 0 + 0\]
Therefore, we get
\[ \Rightarrow a + b + c = 0\]
We have proved using the algebraic identity that if \[a + b + c = 0\], then \[{a^3} + {b^3} + {c^3} = 3abc\].
Since \[a + b + c = \left( {p + 2q - 3r} \right) + \left( {q + 2r - 3p} \right) + \left( {r + 2p - 3q} \right) = 0\], we can use \[{a^3} + {b^3} + {c^3} = 3abc\].
Substituting \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\] in the equation \[{a^3} + {b^3} + {c^3} = 3abc\], we get
\[ \Rightarrow {\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3} = 3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\]
Therefore, we get the value of the expression \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\] as \[3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\].
Thus, the correct option is option (c).
Note: We supposed that the sum of the three numbers in the identity is 0. This is because if the sum of the three numbers is 0, then the right hand side is equal to 0. The sum of the three numbers given in the expression \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\] is 0. By rewriting the identity when the sum of the three numbers \[a + b + c = 0\], we have formed a simplified identity to find the value of \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\].
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
Which one of the following groups comprises states class 8 social science CBSE

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Advantages and disadvantages of science

Write a letter to the Municipal Commissioner to inform class 8 english CBSE

What are the methods of reducing friction. Explain

Differentiate between the farms in India and the U class 8 social science CBSE


