
The identity \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\] can be easily verified by expanding the right hand side.
Using the above identity (or otherwise) answer the following:
Factorize the expression:
\[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\]
(a) \[\left( {p + q + r} \right)\left( {{p^2} + {q^2} + {r^2} - 2\left( {pq + qr + pq} \right)} \right)\]
(b) \[\left( {p + q + r} \right)\left( {2{p^2} + 2{q^2} + 2{r^2} - 3\left( {pq + qr + rp} \right)} \right)\]
(c) \[3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\]
(d) None of these
Answer
504.3k+ views
Hint: Here, we need to compute the given expression. We will rewrite the given algebraic identity taking the sum of the numbers as zero. Then, we will simplify the expression using the identity to find the required value of the given expression.
Formula Used:
\[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\]
Complete step-by-step answer:
The given algebraic identity is \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\].
Adding \[3abc\] to both sides of the algebraic identity, we get
\[\Rightarrow {a^3} + {b^3} + {c^3} - 3abc + 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc \\
\Rightarrow {a^3} + {b^3} + {c^3} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc \\ \]
Suppose that the sum of the three numbers is 0.
Therefore, we have
\[a + b + c = 0\]
Substituting \[a + b + c = 0\] in the identity, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 0\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc\]
We know that when any number or expression is multiplied by 0, the result is 0.
Therefore, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 0 + 3abc\]
Adding the terms, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 3abc\]
Now, we will find the value of the given expression.
The given expression is \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\].
Let \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\].
We will check the sum of these numbers.
Substituting \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\] in the expression \[a + b + c\], we get
\[ \Rightarrow a + b + c = p + 2q - 3r + q + 2r - 3p + r + 2p - 3q\]
Adding the like terms in the expression, we get
\[ \Rightarrow a + b + c = 3p + 3q - 3r + 3r - 3p - 3q\]
Pairing the terms of the expression, we get
\[ \Rightarrow a + b + c = \left( {3p - 3p} \right) + \left( {3q - 3q} \right) + \left( {3r - 3r} \right)\]
Subtracting the terms in the parentheses, we get
\[ \Rightarrow a + b + c = 0 + 0 + 0\]
Therefore, we get
\[ \Rightarrow a + b + c = 0\]
We have proved using the algebraic identity that if \[a + b + c = 0\], then \[{a^3} + {b^3} + {c^3} = 3abc\].
Since \[a + b + c = \left( {p + 2q - 3r} \right) + \left( {q + 2r - 3p} \right) + \left( {r + 2p - 3q} \right) = 0\], we can use \[{a^3} + {b^3} + {c^3} = 3abc\].
Substituting \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\] in the equation \[{a^3} + {b^3} + {c^3} = 3abc\], we get
\[ \Rightarrow {\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3} = 3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\]
Therefore, we get the value of the expression \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\] as \[3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\].
Thus, the correct option is option (c).
Note: We supposed that the sum of the three numbers in the identity is 0. This is because if the sum of the three numbers is 0, then the right hand side is equal to 0. The sum of the three numbers given in the expression \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\] is 0. By rewriting the identity when the sum of the three numbers \[a + b + c = 0\], we have formed a simplified identity to find the value of \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\].
Formula Used:
\[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\]
Complete step-by-step answer:
The given algebraic identity is \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\].
Adding \[3abc\] to both sides of the algebraic identity, we get
\[\Rightarrow {a^3} + {b^3} + {c^3} - 3abc + 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc \\
\Rightarrow {a^3} + {b^3} + {c^3} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc \\ \]
Suppose that the sum of the three numbers is 0.
Therefore, we have
\[a + b + c = 0\]
Substituting \[a + b + c = 0\] in the identity, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 0\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc\]
We know that when any number or expression is multiplied by 0, the result is 0.
Therefore, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 0 + 3abc\]
Adding the terms, we get
\[ \Rightarrow {a^3} + {b^3} + {c^3} = 3abc\]
Now, we will find the value of the given expression.
The given expression is \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\].
Let \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\].
We will check the sum of these numbers.
Substituting \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\] in the expression \[a + b + c\], we get
\[ \Rightarrow a + b + c = p + 2q - 3r + q + 2r - 3p + r + 2p - 3q\]
Adding the like terms in the expression, we get
\[ \Rightarrow a + b + c = 3p + 3q - 3r + 3r - 3p - 3q\]
Pairing the terms of the expression, we get
\[ \Rightarrow a + b + c = \left( {3p - 3p} \right) + \left( {3q - 3q} \right) + \left( {3r - 3r} \right)\]
Subtracting the terms in the parentheses, we get
\[ \Rightarrow a + b + c = 0 + 0 + 0\]
Therefore, we get
\[ \Rightarrow a + b + c = 0\]
We have proved using the algebraic identity that if \[a + b + c = 0\], then \[{a^3} + {b^3} + {c^3} = 3abc\].
Since \[a + b + c = \left( {p + 2q - 3r} \right) + \left( {q + 2r - 3p} \right) + \left( {r + 2p - 3q} \right) = 0\], we can use \[{a^3} + {b^3} + {c^3} = 3abc\].
Substituting \[a = p + 2q - 3r\], \[b = q + 2r - 3p\], and \[c = r + 2p - 3q\] in the equation \[{a^3} + {b^3} + {c^3} = 3abc\], we get
\[ \Rightarrow {\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3} = 3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\]
Therefore, we get the value of the expression \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\] as \[3\left( {p + 2q - 3r} \right)\left( {q + 2r - 3p} \right)\left( {r + 2p - 3q} \right)\].
Thus, the correct option is option (c).
Note: We supposed that the sum of the three numbers in the identity is 0. This is because if the sum of the three numbers is 0, then the right hand side is equal to 0. The sum of the three numbers given in the expression \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\] is 0. By rewriting the identity when the sum of the three numbers \[a + b + c = 0\], we have formed a simplified identity to find the value of \[{\left( {p + 2q - 3r} \right)^3} + {\left( {q + 2r - 3p} \right)^3} + {\left( {r + 2p - 3q} \right)^3}\].
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

How many ounces are in 500 mL class 8 maths CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
