
The harmonic conjugate of $(4,1)$ with respect to the points $(3,2)$ and$( - 1,6)$ is
Answer
603.9k+ views
Hint: Approach the solution by applying the section formula for given points. Here is the section formula for x coordinate and the section formula for y coordinates is similar as x coordinate.
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
Here we have to find harmonic conjugate of $(4,1)$ with respect to given points
Let $(4,1)$ divides $(3,2)$ and $( - 1,6)$ in $K:1$ ratio
So here let us apply the section formula
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow 4 = \dfrac{{k( - 1) + 1(3)}}{{k + 1}} \\
\Rightarrow 4k + 4 = 3 - k \\
\Rightarrow 5k = - 1 \\
\Rightarrow k = \dfrac{{ - 1}}{5} \\
$
So, here the given points $(3,2)$and $( - 1,6)$ are going divide in $ - 1:5$ ratio
Here the ratio $ - 1:5$ divides the points externally but we have to divide the ratio internally
So to get the internal point ratio we have to remove the negative sign from the external ratio.
$\therefore $ Internal ratio =$1:5$
The harmonic conjugate divides the given point internally in ratio $1:5$
Apply the section formula
$x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow \dfrac{{1( - 1) + 5(3)}}{{5 + 1}} \\
\Rightarrow \dfrac{7}{3} \\
$
$
y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}} \\
\Rightarrow y = \dfrac{{1(6) + 5(2)}}{{5 + 1}} \\
\Rightarrow y = \dfrac{8}{3} \\
$
Therefore the harmonic conjugate of the required point that divides internally in the ratio $1:5$ = $\left( {\dfrac{8}{3},\dfrac{7}{3}} \right)$
Note: In these types of problems external or internal ratio matter where sign value is different. Here we have used section formulas to both x and y coordinates.
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
Here we have to find harmonic conjugate of $(4,1)$ with respect to given points
Let $(4,1)$ divides $(3,2)$ and $( - 1,6)$ in $K:1$ ratio
So here let us apply the section formula
Section formula $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow 4 = \dfrac{{k( - 1) + 1(3)}}{{k + 1}} \\
\Rightarrow 4k + 4 = 3 - k \\
\Rightarrow 5k = - 1 \\
\Rightarrow k = \dfrac{{ - 1}}{5} \\
$
So, here the given points $(3,2)$and $( - 1,6)$ are going divide in $ - 1:5$ ratio
Here the ratio $ - 1:5$ divides the points externally but we have to divide the ratio internally
So to get the internal point ratio we have to remove the negative sign from the external ratio.
$\therefore $ Internal ratio =$1:5$
The harmonic conjugate divides the given point internally in ratio $1:5$
Apply the section formula
$x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$
$
\Rightarrow \dfrac{{1( - 1) + 5(3)}}{{5 + 1}} \\
\Rightarrow \dfrac{7}{3} \\
$
$
y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}} \\
\Rightarrow y = \dfrac{{1(6) + 5(2)}}{{5 + 1}} \\
\Rightarrow y = \dfrac{8}{3} \\
$
Therefore the harmonic conjugate of the required point that divides internally in the ratio $1:5$ = $\left( {\dfrac{8}{3},\dfrac{7}{3}} \right)$
Note: In these types of problems external or internal ratio matter where sign value is different. Here we have used section formulas to both x and y coordinates.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

