
The half life period of a first order reaction is \[20\text{ }minutes\] . The time required for the concentration of the reactant to change from \[0.16\text{ }M\text{ }to\text{ }0.02\text{ }M\] is
A) \[\text{80 }minutes\]
B) \[60\text{ }minutes\]
C) \[40\text{ }minutes\]
D) \[20\text{ }minutes\]
Answer
582.6k+ views
Hint: The following two formulae are needed to solve this question.
\[\begin{align}
& k=\dfrac{0.693}{{{t}_{1/2}}} \\
& t=\dfrac{2.303}{k}\log \dfrac{a}{a-x} \\
\end{align}\]
Complete step by step answer:
The relationship between the rate constant k and the half life period for a first order reaction is as follows:
\[k=\dfrac{0.693}{{{t}_{1/2}}}\]
The half life period of a first order reaction is 20 minutes.
\[{{t}_{1/2}}=20\text{ minutes}\]
Calculate the rate constant for the first order reaction:
\[\begin{align}
& k=\dfrac{0.693}{{{t}_{1/2}}} \\
& k=\dfrac{0.693}{20\text{ minutes}} \\
& k=0.03465\text{ minut}{{\text{e}}^{-1}} \\
\end{align}\]
The relationship between the time t required for a certain change in concentration of reactant and the rate constant k for the first order reaction is as follows:
\[t=\dfrac{2.303}{k}\log \dfrac{a}{a-x}\] ... ...(1)
Here, a is the initial concentration and a-x is the concentration at time t.
The initial concentration of the reactant is 0.16 M.
\[a=0.16M\]
The concentration of the reactant at time t is 0.02 M.
\[a-x=0.02M\]
Calculate the ratio of the initial concentration of the reactant to the concentration of the reactant at time t.
\[\dfrac{a}{a-x}=\dfrac{0.16M}{0.02M}=8\]
Calculate the logarithm of the ratio
\[\log \dfrac{a}{a-x}=\log 8=0.9031\]
Substitute values in equation (1)
\[\begin{align}
& t=\dfrac{2.303}{k}\log \dfrac{a}{a-x} \\
& t=\dfrac{2.303}{0.03465\text{ minut}{{\text{e}}^{-1}}}\times 0.9031 \\
& t=60\text{ minute} \\
\end{align}\]
The time required to decrease the concentration of the reactant from \[0.16\text{ }M\text{ }to\text{ }0.02\text{ }M\]is \[60\text{ }minutes\].
So, the correct answer is “Option B”.
Note:
Another approach to solve the same problem is to determine the number of half lives needed for the concentration of the reactant to change from \[0.16\text{ }M\text{ }to\text{ }0.02\text{ }M\].
\[\begin{align}
& \dfrac{0.02}{0.16}=\dfrac{1}{8}={{\left( \dfrac{1}{2} \right)}^{3}}={{\left( \dfrac{1}{2} \right)}^{n}} \\
& n=3 \\
\end{align}\]
Three half life periods are needed. The half life period is \[20\text{ }minutes\]. For three half life periods, time will be \[60\text{ }minutes\].
\[\begin{align}
& k=\dfrac{0.693}{{{t}_{1/2}}} \\
& t=\dfrac{2.303}{k}\log \dfrac{a}{a-x} \\
\end{align}\]
Complete step by step answer:
The relationship between the rate constant k and the half life period for a first order reaction is as follows:
\[k=\dfrac{0.693}{{{t}_{1/2}}}\]
The half life period of a first order reaction is 20 minutes.
\[{{t}_{1/2}}=20\text{ minutes}\]
Calculate the rate constant for the first order reaction:
\[\begin{align}
& k=\dfrac{0.693}{{{t}_{1/2}}} \\
& k=\dfrac{0.693}{20\text{ minutes}} \\
& k=0.03465\text{ minut}{{\text{e}}^{-1}} \\
\end{align}\]
The relationship between the time t required for a certain change in concentration of reactant and the rate constant k for the first order reaction is as follows:
\[t=\dfrac{2.303}{k}\log \dfrac{a}{a-x}\] ... ...(1)
Here, a is the initial concentration and a-x is the concentration at time t.
The initial concentration of the reactant is 0.16 M.
\[a=0.16M\]
The concentration of the reactant at time t is 0.02 M.
\[a-x=0.02M\]
Calculate the ratio of the initial concentration of the reactant to the concentration of the reactant at time t.
\[\dfrac{a}{a-x}=\dfrac{0.16M}{0.02M}=8\]
Calculate the logarithm of the ratio
\[\log \dfrac{a}{a-x}=\log 8=0.9031\]
Substitute values in equation (1)
\[\begin{align}
& t=\dfrac{2.303}{k}\log \dfrac{a}{a-x} \\
& t=\dfrac{2.303}{0.03465\text{ minut}{{\text{e}}^{-1}}}\times 0.9031 \\
& t=60\text{ minute} \\
\end{align}\]
The time required to decrease the concentration of the reactant from \[0.16\text{ }M\text{ }to\text{ }0.02\text{ }M\]is \[60\text{ }minutes\].
So, the correct answer is “Option B”.
Note:
Another approach to solve the same problem is to determine the number of half lives needed for the concentration of the reactant to change from \[0.16\text{ }M\text{ }to\text{ }0.02\text{ }M\].
\[\begin{align}
& \dfrac{0.02}{0.16}=\dfrac{1}{8}={{\left( \dfrac{1}{2} \right)}^{3}}={{\left( \dfrac{1}{2} \right)}^{n}} \\
& n=3 \\
\end{align}\]
Three half life periods are needed. The half life period is \[20\text{ }minutes\]. For three half life periods, time will be \[60\text{ }minutes\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

