
The half life period of a first order reaction is \[20\text{ }minutes\] . The time required for the concentration of the reactant to change from \[0.16\text{ }M\text{ }to\text{ }0.02\text{ }M\] is
A) \[\text{80 }minutes\]
B) \[60\text{ }minutes\]
C) \[40\text{ }minutes\]
D) \[20\text{ }minutes\]
Answer
585.6k+ views
Hint: The following two formulae are needed to solve this question.
\[\begin{align}
& k=\dfrac{0.693}{{{t}_{1/2}}} \\
& t=\dfrac{2.303}{k}\log \dfrac{a}{a-x} \\
\end{align}\]
Complete step by step answer:
The relationship between the rate constant k and the half life period for a first order reaction is as follows:
\[k=\dfrac{0.693}{{{t}_{1/2}}}\]
The half life period of a first order reaction is 20 minutes.
\[{{t}_{1/2}}=20\text{ minutes}\]
Calculate the rate constant for the first order reaction:
\[\begin{align}
& k=\dfrac{0.693}{{{t}_{1/2}}} \\
& k=\dfrac{0.693}{20\text{ minutes}} \\
& k=0.03465\text{ minut}{{\text{e}}^{-1}} \\
\end{align}\]
The relationship between the time t required for a certain change in concentration of reactant and the rate constant k for the first order reaction is as follows:
\[t=\dfrac{2.303}{k}\log \dfrac{a}{a-x}\] ... ...(1)
Here, a is the initial concentration and a-x is the concentration at time t.
The initial concentration of the reactant is 0.16 M.
\[a=0.16M\]
The concentration of the reactant at time t is 0.02 M.
\[a-x=0.02M\]
Calculate the ratio of the initial concentration of the reactant to the concentration of the reactant at time t.
\[\dfrac{a}{a-x}=\dfrac{0.16M}{0.02M}=8\]
Calculate the logarithm of the ratio
\[\log \dfrac{a}{a-x}=\log 8=0.9031\]
Substitute values in equation (1)
\[\begin{align}
& t=\dfrac{2.303}{k}\log \dfrac{a}{a-x} \\
& t=\dfrac{2.303}{0.03465\text{ minut}{{\text{e}}^{-1}}}\times 0.9031 \\
& t=60\text{ minute} \\
\end{align}\]
The time required to decrease the concentration of the reactant from \[0.16\text{ }M\text{ }to\text{ }0.02\text{ }M\]is \[60\text{ }minutes\].
So, the correct answer is “Option B”.
Note:
Another approach to solve the same problem is to determine the number of half lives needed for the concentration of the reactant to change from \[0.16\text{ }M\text{ }to\text{ }0.02\text{ }M\].
\[\begin{align}
& \dfrac{0.02}{0.16}=\dfrac{1}{8}={{\left( \dfrac{1}{2} \right)}^{3}}={{\left( \dfrac{1}{2} \right)}^{n}} \\
& n=3 \\
\end{align}\]
Three half life periods are needed. The half life period is \[20\text{ }minutes\]. For three half life periods, time will be \[60\text{ }minutes\].
\[\begin{align}
& k=\dfrac{0.693}{{{t}_{1/2}}} \\
& t=\dfrac{2.303}{k}\log \dfrac{a}{a-x} \\
\end{align}\]
Complete step by step answer:
The relationship between the rate constant k and the half life period for a first order reaction is as follows:
\[k=\dfrac{0.693}{{{t}_{1/2}}}\]
The half life period of a first order reaction is 20 minutes.
\[{{t}_{1/2}}=20\text{ minutes}\]
Calculate the rate constant for the first order reaction:
\[\begin{align}
& k=\dfrac{0.693}{{{t}_{1/2}}} \\
& k=\dfrac{0.693}{20\text{ minutes}} \\
& k=0.03465\text{ minut}{{\text{e}}^{-1}} \\
\end{align}\]
The relationship between the time t required for a certain change in concentration of reactant and the rate constant k for the first order reaction is as follows:
\[t=\dfrac{2.303}{k}\log \dfrac{a}{a-x}\] ... ...(1)
Here, a is the initial concentration and a-x is the concentration at time t.
The initial concentration of the reactant is 0.16 M.
\[a=0.16M\]
The concentration of the reactant at time t is 0.02 M.
\[a-x=0.02M\]
Calculate the ratio of the initial concentration of the reactant to the concentration of the reactant at time t.
\[\dfrac{a}{a-x}=\dfrac{0.16M}{0.02M}=8\]
Calculate the logarithm of the ratio
\[\log \dfrac{a}{a-x}=\log 8=0.9031\]
Substitute values in equation (1)
\[\begin{align}
& t=\dfrac{2.303}{k}\log \dfrac{a}{a-x} \\
& t=\dfrac{2.303}{0.03465\text{ minut}{{\text{e}}^{-1}}}\times 0.9031 \\
& t=60\text{ minute} \\
\end{align}\]
The time required to decrease the concentration of the reactant from \[0.16\text{ }M\text{ }to\text{ }0.02\text{ }M\]is \[60\text{ }minutes\].
So, the correct answer is “Option B”.
Note:
Another approach to solve the same problem is to determine the number of half lives needed for the concentration of the reactant to change from \[0.16\text{ }M\text{ }to\text{ }0.02\text{ }M\].
\[\begin{align}
& \dfrac{0.02}{0.16}=\dfrac{1}{8}={{\left( \dfrac{1}{2} \right)}^{3}}={{\left( \dfrac{1}{2} \right)}^{n}} \\
& n=3 \\
\end{align}\]
Three half life periods are needed. The half life period is \[20\text{ }minutes\]. For three half life periods, time will be \[60\text{ }minutes\].
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

