Answer
Verified
424.8k+ views
Hint: The relation between electric field and potential is given. It represents that the electric field along any axis is the change in potential per unit change in distance along the axis. Using the relation we can calculate the electric field at a point. Using the electric field we can calculate the acceleration and then calculate the velocity of the particle using equations of motion.
Formulas used:
$E=-\dfrac{\Delta V}{\Delta x}$
$F=mE$
$F=ma$
${{v}^{2}}={{u}^{2}}+2as$
Complete answer:
The electric field is defined as the work done to bring a unit charge from infinity to a point in the field. Its SI unit is $V\,{{m}^{-1}}$.
The electric potential is defined as the work done to move a unit charge from one point to the other in an electric field. Its SI unit is volt ($V$).
Given that relationship between electric field and electric potential is $\vec{E}=-\left( \dfrac{\partial V}{\partial x}\hat{i}+\dfrac{\partial V}{\partial y}\hat{j}+\dfrac{\partial V}{\partial z}\hat{k} \right)$.
This means that along every axis the electric field is the change in potential per unit change in distance along the axis. Therefore, electric field along x-axis is
$E=-\dfrac{\Delta V}{\Delta x}$ - (1)
Here, $\Delta V$ is the change in potential between two points
$\Delta x$ is the distance between two points
The electric lines of forces are perpendicular to the equipotential surface. Let us assume that the particle is positively charged then it will follow the path a shown
The dash line represents the path followed by the particle. According to the figure,
$\begin{align}
& \Delta V=-20-(-10) \\
& \therefore \Delta V=-10V \\
\end{align}$
$\begin{align}
& l=10\cos {{45}^{o}} \\
& \Rightarrow l=\dfrac{10}{\sqrt{2}}cm \\
\end{align}$
We know that, $l=\Delta x$. We substitute given values in eq (1), to get
$\begin{align}
& E=-\dfrac{-10}{\dfrac{10}{\sqrt{2}}} \\
& \Rightarrow E=\sqrt{2}V{{m}^{-1}} \\
\end{align}$
The electric field is $\sqrt{2}V{{m}^{-1}}$
We know that,$F=mE$ - (2)
Here, $F$ is the force acting on the charge particle
$m$ is the mass of the particle
Also, $F=ma$ - (3)
Here, $m$ is the mass of the particle
$a$ is the acceleration of the particles
From eq (2) and eq (3), we get,
$\begin{align}
& mE=ma \\
& \Rightarrow E=a \\
\end{align}$
Substituting given values in the above equation, we get,
$\sqrt{2}=a$
Therefore, the acceleration of the particle is $\sqrt{2}cm{{s}^{-2}}$
The particle is under constant acceleration as the force acting on it is constant. We can apply the following equation of motion
${{v}^{2}}={{u}^{2}}+2as$
Here, $v$ is the final velocity
$u$ is the initial velocity
$s$ is the distance travelled
Given, $u=0,\,s=x=4cm$. Substituting in the above equation we get,
$\begin{align}
& {{v}^{2}}=0+2\sqrt{2}\times 4 \\
& \Rightarrow {{v}^{2}}=8\sqrt{2} \\
& \therefore v\approx 2\sqrt{2}cm\,{{s}^{-1}} \\
\end{align}$
Therefore, the x-component of velocity is $2\sqrt{2}cm\,{{s}^{-1}}$.
Hence, the correct option is (C).
Note:
In partial differentiation, other variables other than the variable with respect to which we differentiate are taken constant. The equipotential surfaces can be open or closed but the electric lines of forces are always open. On every point of an equipotential surface, the potential is the same.
Formulas used:
$E=-\dfrac{\Delta V}{\Delta x}$
$F=mE$
$F=ma$
${{v}^{2}}={{u}^{2}}+2as$
Complete answer:
The electric field is defined as the work done to bring a unit charge from infinity to a point in the field. Its SI unit is $V\,{{m}^{-1}}$.
The electric potential is defined as the work done to move a unit charge from one point to the other in an electric field. Its SI unit is volt ($V$).
Given that relationship between electric field and electric potential is $\vec{E}=-\left( \dfrac{\partial V}{\partial x}\hat{i}+\dfrac{\partial V}{\partial y}\hat{j}+\dfrac{\partial V}{\partial z}\hat{k} \right)$.
This means that along every axis the electric field is the change in potential per unit change in distance along the axis. Therefore, electric field along x-axis is
$E=-\dfrac{\Delta V}{\Delta x}$ - (1)
Here, $\Delta V$ is the change in potential between two points
$\Delta x$ is the distance between two points
The electric lines of forces are perpendicular to the equipotential surface. Let us assume that the particle is positively charged then it will follow the path a shown
The dash line represents the path followed by the particle. According to the figure,
$\begin{align}
& \Delta V=-20-(-10) \\
& \therefore \Delta V=-10V \\
\end{align}$
$\begin{align}
& l=10\cos {{45}^{o}} \\
& \Rightarrow l=\dfrac{10}{\sqrt{2}}cm \\
\end{align}$
We know that, $l=\Delta x$. We substitute given values in eq (1), to get
$\begin{align}
& E=-\dfrac{-10}{\dfrac{10}{\sqrt{2}}} \\
& \Rightarrow E=\sqrt{2}V{{m}^{-1}} \\
\end{align}$
The electric field is $\sqrt{2}V{{m}^{-1}}$
We know that,$F=mE$ - (2)
Here, $F$ is the force acting on the charge particle
$m$ is the mass of the particle
Also, $F=ma$ - (3)
Here, $m$ is the mass of the particle
$a$ is the acceleration of the particles
From eq (2) and eq (3), we get,
$\begin{align}
& mE=ma \\
& \Rightarrow E=a \\
\end{align}$
Substituting given values in the above equation, we get,
$\sqrt{2}=a$
Therefore, the acceleration of the particle is $\sqrt{2}cm{{s}^{-2}}$
The particle is under constant acceleration as the force acting on it is constant. We can apply the following equation of motion
${{v}^{2}}={{u}^{2}}+2as$
Here, $v$ is the final velocity
$u$ is the initial velocity
$s$ is the distance travelled
Given, $u=0,\,s=x=4cm$. Substituting in the above equation we get,
$\begin{align}
& {{v}^{2}}=0+2\sqrt{2}\times 4 \\
& \Rightarrow {{v}^{2}}=8\sqrt{2} \\
& \therefore v\approx 2\sqrt{2}cm\,{{s}^{-1}} \\
\end{align}$
Therefore, the x-component of velocity is $2\sqrt{2}cm\,{{s}^{-1}}$.
Hence, the correct option is (C).
Note:
In partial differentiation, other variables other than the variable with respect to which we differentiate are taken constant. The equipotential surfaces can be open or closed but the electric lines of forces are always open. On every point of an equipotential surface, the potential is the same.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE