
The given sum $1 \times 1! + 2 \times 2! + ............. + 50 \times 50!$ is equal to
(a) $51!$
(b) $51! - 1$
(c) $51! + 1$
(d) $2 \times 51!$
Answer
616.8k+ views
Hint: In this problem use some basic properties of factorials and rearrange the terms to get a desired answer.
We have to find the sum of $1 \times 1! + 2 \times 2! + ............. + 50 \times 50!$
This can be rewritten as
\[\left( {2 - 1} \right)1! + \left( {3 - 1} \right)2! + \left( {4 - 1} \right)3! + ...............................\left( {50 - 1} \right)49! + \left( {51 - 1} \right)50!\]
Separating the positive terms and negative terms, we get
\[\left( {2 \times 1! + 3 \times 2! + 4 \times 3! + ..............50 \times 49! + 51 \times 50!} \right) - \left({1! + 2! + 3! + ..............49! + 50!} \right)\]
which can be written as
\[\left( {2! + 3! + 4! + ..............50! + 51!} \right) - \left( {1! + 2! + 3! + ..............49! + 50!} \right)\]
Adding and subtracting \[1\] we get
\[\left[ {\left( {1! + 2! + 3! + ..............49! + 50! + 51!} \right) - \left( {1! + 2! + 3! + ..............49! + 50!}\right)} \right] - 1\]
Cancelling the common terms, we will get
\[51! - 1\]
Thus the answer is option (b) $51! - 1$
Note: In this type of problems we can also solve by the summation method by rewriting the equation and using the formula $\sum\limits_{n = 1}^n {\left( {n + 1} \right)! - n! = \left( {n + 1} \right)! - 1}$ directly.
We have to find the sum of $1 \times 1! + 2 \times 2! + ............. + 50 \times 50!$
This can be rewritten as
\[\left( {2 - 1} \right)1! + \left( {3 - 1} \right)2! + \left( {4 - 1} \right)3! + ...............................\left( {50 - 1} \right)49! + \left( {51 - 1} \right)50!\]
Separating the positive terms and negative terms, we get
\[\left( {2 \times 1! + 3 \times 2! + 4 \times 3! + ..............50 \times 49! + 51 \times 50!} \right) - \left({1! + 2! + 3! + ..............49! + 50!} \right)\]
which can be written as
\[\left( {2! + 3! + 4! + ..............50! + 51!} \right) - \left( {1! + 2! + 3! + ..............49! + 50!} \right)\]
Adding and subtracting \[1\] we get
\[\left[ {\left( {1! + 2! + 3! + ..............49! + 50! + 51!} \right) - \left( {1! + 2! + 3! + ..............49! + 50!}\right)} \right] - 1\]
Cancelling the common terms, we will get
\[51! - 1\]
Thus the answer is option (b) $51! - 1$
Note: In this type of problems we can also solve by the summation method by rewriting the equation and using the formula $\sum\limits_{n = 1}^n {\left( {n + 1} \right)! - n! = \left( {n + 1} \right)! - 1}$ directly.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

