
The given sum $1 \times 1! + 2 \times 2! + ............. + 50 \times 50!$ is equal to
(a) $51!$
(b) $51! - 1$
(c) $51! + 1$
(d) $2 \times 51!$
Answer
594.3k+ views
Hint: In this problem use some basic properties of factorials and rearrange the terms to get a desired answer.
We have to find the sum of $1 \times 1! + 2 \times 2! + ............. + 50 \times 50!$
This can be rewritten as
\[\left( {2 - 1} \right)1! + \left( {3 - 1} \right)2! + \left( {4 - 1} \right)3! + ...............................\left( {50 - 1} \right)49! + \left( {51 - 1} \right)50!\]
Separating the positive terms and negative terms, we get
\[\left( {2 \times 1! + 3 \times 2! + 4 \times 3! + ..............50 \times 49! + 51 \times 50!} \right) - \left({1! + 2! + 3! + ..............49! + 50!} \right)\]
which can be written as
\[\left( {2! + 3! + 4! + ..............50! + 51!} \right) - \left( {1! + 2! + 3! + ..............49! + 50!} \right)\]
Adding and subtracting \[1\] we get
\[\left[ {\left( {1! + 2! + 3! + ..............49! + 50! + 51!} \right) - \left( {1! + 2! + 3! + ..............49! + 50!}\right)} \right] - 1\]
Cancelling the common terms, we will get
\[51! - 1\]
Thus the answer is option (b) $51! - 1$
Note: In this type of problems we can also solve by the summation method by rewriting the equation and using the formula $\sum\limits_{n = 1}^n {\left( {n + 1} \right)! - n! = \left( {n + 1} \right)! - 1}$ directly.
We have to find the sum of $1 \times 1! + 2 \times 2! + ............. + 50 \times 50!$
This can be rewritten as
\[\left( {2 - 1} \right)1! + \left( {3 - 1} \right)2! + \left( {4 - 1} \right)3! + ...............................\left( {50 - 1} \right)49! + \left( {51 - 1} \right)50!\]
Separating the positive terms and negative terms, we get
\[\left( {2 \times 1! + 3 \times 2! + 4 \times 3! + ..............50 \times 49! + 51 \times 50!} \right) - \left({1! + 2! + 3! + ..............49! + 50!} \right)\]
which can be written as
\[\left( {2! + 3! + 4! + ..............50! + 51!} \right) - \left( {1! + 2! + 3! + ..............49! + 50!} \right)\]
Adding and subtracting \[1\] we get
\[\left[ {\left( {1! + 2! + 3! + ..............49! + 50! + 51!} \right) - \left( {1! + 2! + 3! + ..............49! + 50!}\right)} \right] - 1\]
Cancelling the common terms, we will get
\[51! - 1\]
Thus the answer is option (b) $51! - 1$
Note: In this type of problems we can also solve by the summation method by rewriting the equation and using the formula $\sum\limits_{n = 1}^n {\left( {n + 1} \right)! - n! = \left( {n + 1} \right)! - 1}$ directly.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

