Answer

Verified

339.6k+ views

**Hint:**Here, we will find the mode of the given data. The given data is in the form of the grouped frequency distribution. First, we will find the modal class, and then by using the formula for mode of grouped frequency distribution, we will find the mode. Mode is defined as the value with the maximum frequency for the grouped frequency distribution and for ungrouped frequency distribution. The class interval with maximum frequency is called the modal class.

**Formula Used:**

Mode is calculated by the given formula \[{\rm{Mode}} = l + \left( {\dfrac{{f - {f_1}}}{{2f - {f_1} - {f_2}}}} \right) \times c\], where \[l\] is the lower limit of the modal class, \[f\] is the frequency of the modal class, \[{f_1}\] is the frequency of the class just preceding the modal class, \[{f_2}\] is the frequency of the class succeeding the modal class, \[c\] is the width of the class interval.

**Complete Step by Step Solution:**

Runs scored | Number of batsmen |

3000-4000 | 4 |

4000-5000 | 18 |

5000-6000 | 9 |

6000-7000 | 7 |

7000-8000 | 6 |

8000-9000 | 3 |

9000-10000 | 1 |

10000-11000 | 1 |

From the given data,

Since the maximum frequency is 18, then the corresponding class is 4000-5000.

Therefore, the modal class is 4000-5000.

Thus, the lower limit of the class \[l = 4000\], frequency of the modal class \[f = 18\], frequency of the class just preceding the modal class \[{f_1} = 4\], frequency of the class succeeding the modal class \[{f_2} = 9\], Width of the class interval \[c = 1000\].

Now we will calculate the mode of the frequency distribution.

Substituting \[l = 4000\], \[f = 18\], \[{f_1} = 4\], \[{f_2} = 9\] and \[c = 1000\] in the formula \[{\rm{Mode}} = l + \left( {\dfrac{{f - {f_1}}}{{2f - {f_1} - {f_2}}}} \right) \times c\], we get

\[{\rm{Mode}} = 4000 + \left( {\dfrac{{18 - 4}}{{2\left( {18} \right) - 4 - 9}}} \right) \times 1000\]

Multiplying the terms in the denominator, we get

\[ \Rightarrow {\rm{Mode}} = 4000 + \left( {\dfrac{{14}}{{36 - 4 - 9}}} \right) \times 1000\]

Adding the terms in the denominator, we get

\[ \Rightarrow {\rm{Mode}} = 4000 + \left( {\dfrac{{14}}{{36 - 13}}} \right) \times 1000\]

\[ \Rightarrow {\rm{Mode}} = 4000 + \left( {\dfrac{{14}}{{23}}} \right) \times 1000\]

Simplifying the expression, we get

\[ \Rightarrow {\rm{Mode}} = 4000 + \left( {\dfrac{{14000}}{{23}}} \right)\]

Dividing 14000 by 23, we get

\[ \Rightarrow {\rm{Mode}} = 4000 + 608.69\]

Adding the terms, we get

\[ \Rightarrow {\rm{Mode}} = 4608.69\]

**Therefore, the mode is \[4608.69\].**

**Note:**

We know that mode can be calculated easily by finding the variable that occurs many times but we need to keep in mind that this fact is only acceptable for the raw data. For a grouped frequency distribution, it is essential for us to find the highest frequency, only then we will be using the formula to calculate the mode for the grouped data.

Recently Updated Pages

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

What happens when entropy reaches maximum class 11 chemistry JEE_Main

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Difference Between Plant Cell and Animal Cell

Which of the following books is not written by Harshavardhana class 6 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

In which states of India are mango showers common What class 9 social science CBSE

What Made Mr Keesing Allow Anne to Talk in Class class 10 english CBSE