
The general solution of ${\tan ^2}x = 1$ is:
$
{\text{A}}{\text{. }}\,\,n\pi + \dfrac{\pi }{4} \\
{\text{B}}{\text{.}}\,\,\,n\pi - \dfrac{\pi }{4} \\
{\text{C}}{\text{.}}\,\,\,n\pi \pm \dfrac{\pi }{4} \\
{\text{D}}{\text{.}}\,\,\,\,{\text{2}}n\pi \pm \dfrac{\pi }{4} \\
$
Answer
607.5k+ views
Hint: Here, we have to use the formula ${{\text{A}}^2} - {{\text{B}}^2} = ({\text{A + B}})({\text{A - B}})$ to find the general solution of the given equation.
Complete step-by-step answer:
We have ${\tan ^2}x = 1$
We do ${\tan ^2}x - 1 = 0$
As we know ${{\text{A}}^2} - {{\text{B}}^2} = ({\text{A + B}})({\text{A - B}})$
On applying the same to the given equation we get,
${\tan ^2}x - {1^2} = (\tan x - 1)(\tan x + 1) = 0$
Now, either $\tan x = 1$ or $\tan x = - 1$
Then we can say $\tan x = \pm 1$
With the help of trigonometric values we get to know that ,
$x = \dfrac{\pi }{4}$
We know on adding or subtracting $\pi $ with $\,\dfrac{\pi }{4}$.
We got the same value, that is $ \pm {\text{1 }}$.
Therefore the general solution of the equation is
$x = n\pi \pm \dfrac{\pi }{4}$
So, the correct option is ${\text{C}}$.
Note: Whenever we are struck with these types of problems of finding general solutions always try to find the basic angle from the value obtained by algebraic operations. And then use the quadrant rule in trigonometry to get the general solution.
Complete step-by-step answer:
We have ${\tan ^2}x = 1$
We do ${\tan ^2}x - 1 = 0$
As we know ${{\text{A}}^2} - {{\text{B}}^2} = ({\text{A + B}})({\text{A - B}})$
On applying the same to the given equation we get,
${\tan ^2}x - {1^2} = (\tan x - 1)(\tan x + 1) = 0$
Now, either $\tan x = 1$ or $\tan x = - 1$
Then we can say $\tan x = \pm 1$
With the help of trigonometric values we get to know that ,
$x = \dfrac{\pi }{4}$
We know on adding or subtracting $\pi $ with $\,\dfrac{\pi }{4}$.
We got the same value, that is $ \pm {\text{1 }}$.
Therefore the general solution of the equation is
$x = n\pi \pm \dfrac{\pi }{4}$
So, the correct option is ${\text{C}}$.
Note: Whenever we are struck with these types of problems of finding general solutions always try to find the basic angle from the value obtained by algebraic operations. And then use the quadrant rule in trigonometry to get the general solution.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

