
The general solution of \[\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x\] is
A.\[n\pi +\dfrac{\pi }{8}\]
B.\[\dfrac{n\pi }{2}+\dfrac{\pi }{8}\]
C.\[{{\left( -1 \right)}^{n}}\left( \dfrac{n\pi }{2}+\dfrac{\pi }{8} \right)\]
D.\[2n\pi -\dfrac{\pi }{8}\]
Answer
507.3k+ views
Hint: We know the formula, \[\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\] and \[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\] . Use this formula and simplify \[\sin x+\sin 3x\] and \[\cos x+\cos 3x\] and then, substitute it in the equation \[\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x\] . We know that the maximum value of cosine function is 1. We know that \[\tan \dfrac{\pi }{4}=1\] and the general solution of \[\tan x=\tan \dfrac{\pi }{4}\] is \[x=n\pi +\dfrac{\pi }{4}\] .
Complete step-by-step answer:
According to the question, we have to find the general solution of,
\[\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x\] ……………..(1)
We know the formula,
\[\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\] …………………(2)
Replacing A by x and B by 3x in the equation (2), we get
\[\sin x+\sin 3x=2\sin \left( \dfrac{x+3x}{2} \right)\cos \left( \dfrac{x-3x}{2} \right)\]
\[\Rightarrow \sin x+\sin 3x=2\sin 2x\cos (-x)\] ……………….(4)
We know the property that, \[\cos (-x)=\cos x\] .
Using this property in equation (4), we get
\[\Rightarrow \sin x+\sin 3x=2\sin 2x\cos (-x)\]
\[\Rightarrow \sin x+\sin 3x=2\sin 2x\cos x\] …………………….(5)
We also know the formula,
\[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\] …………………(6)
Replacing A by x and B by 3x in the equation (6), we get
\[\cos x+\cos 3x=2\cos \left( \dfrac{x+3x}{2} \right)\cos \left( \dfrac{x-3x}{2} \right)\]
\[\Rightarrow \cos x+\cos 3x=2\cos 2x\cos (-x)\] ……………….(7)
We know the property that, \[\cos (-x)=\cos x\] .
Using this property in equation (7), we get
\[\Rightarrow \cos x+\cos 3x=2\cos 2x\cos (-x)\]
\[\Rightarrow \cos x+\cos 3x=2\cos 2x\cos x\] …………………….(8)
From equation (1), we have
\[\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x\]
\[\Rightarrow \sin x+\sin 3x-3\sin 2x=\cos x+\cos 2x-3\cos 2x\] …………………(9)
Now, from equation (5), equation (8), and equation (9), we get
\[\Rightarrow \sin x+\sin 3x-3\sin 2x=\cos x+\cos 3x-3\cos 2x\]
\[\Rightarrow 2\sin 2x\cos x-3\sin 2x=2\cos 2x\cos x-3\cos 2x\]
Taking \[\sin 2x\] in the above equation, we get
\[\Rightarrow \sin 2x\left( 2\cos x-3 \right)=\cos 2x\left( 2\cos x-3 \right)\]
\[\begin{align}
& \Rightarrow \sin 2x\left( 2\cos x-3 \right)-\cos 2x\left( 2\cos x-3 \right)=0 \\
& \Rightarrow \left( 2\cos x-3 \right)\left( \sin 2x-\cos 2x \right)=0 \\
\end{align}\]
\[\left( 2\cos x-3 \right)=0\] or \[\left( \sin 2x-\cos 2x \right)=0\] .
First, let us solve for \[\left( 2\cos x-3 \right)=0\]
\[\left( 2\cos x-3 \right)=0\]
\[\begin{align}
& \Rightarrow 2\cos x=3 \\
& \Rightarrow \cos x=\dfrac{3}{2} \\
\end{align}\]
We know that the maximum value of the cosine function is 1 and here, we have \[\cos x=\dfrac{3}{2}\] , which is not possible for any value of x.
Now, we have to solve \[\left( \sin 2x-\cos 2x \right)=0\] .
\[\left( \sin 2x-\cos 2x \right)=0\]
\[\Rightarrow \sin 2x=\cos 2x\]
\[\Rightarrow \dfrac{\sin 2x}{\cos 2x}=1\] …………….(10)
We know that, \[\dfrac{\sin A}{\cos A}=\tan A\] .
Replacing A by 2x in \[\dfrac{\sin A}{\cos A}=\tan A\] , we get
\[\dfrac{\sin 2x}{\cos 2x}=\tan 2x\] ………(11)
From equation (10) and equation (11), we get
\[\Rightarrow \dfrac{\sin 2x}{\cos 2x}=1\]
\[\Rightarrow \tan 2x=1\] …………..(12)
Using \[\tan \dfrac{\pi }{4}=1\] in equation (12), we get
\[\begin{align}
& \Rightarrow \tan 2x=\tan \dfrac{\pi }{4} \\
& \Rightarrow 2x=\dfrac{\pi }{4} \\
\end{align}\]
Using \[\tan \dfrac{5\pi }{4}=1\] in equation (12), we get
\[\begin{align}
& \Rightarrow \tan 2x=\tan \dfrac{5\pi }{4} \\
& \Rightarrow 2x=\dfrac{5\pi }{4} \\
\end{align}\]
We have \[2x=\dfrac{\pi }{4}\] , \[2x=\dfrac{5\pi }{4}=\pi +\dfrac{\pi }{4}\] ……………….
Now, in general we can say that,
\[\begin{align}
& 2x=n\pi +\dfrac{\pi }{4} \\
& \Rightarrow x=\dfrac{n\pi }{2}+\dfrac{\pi }{8} \\
\end{align}\]
So, the correct option is option (B).
Note: In this question, one might think to find the general solution of \[\cos x=\dfrac{3}{2}\] . But we don’t have any solution for \[\cos x=\dfrac{3}{2}\] because the maximum value of cosine function is 1. Also, one can think to use formula \[\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x\] and \[\sin 2x=2\sin x\cos x\] in the equation
\[\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x\] . If we do so, then our equation will become complex to solve.
Complete step-by-step answer:
According to the question, we have to find the general solution of,
\[\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x\] ……………..(1)
We know the formula,
\[\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\] …………………(2)
Replacing A by x and B by 3x in the equation (2), we get
\[\sin x+\sin 3x=2\sin \left( \dfrac{x+3x}{2} \right)\cos \left( \dfrac{x-3x}{2} \right)\]
\[\Rightarrow \sin x+\sin 3x=2\sin 2x\cos (-x)\] ……………….(4)
We know the property that, \[\cos (-x)=\cos x\] .
Using this property in equation (4), we get
\[\Rightarrow \sin x+\sin 3x=2\sin 2x\cos (-x)\]
\[\Rightarrow \sin x+\sin 3x=2\sin 2x\cos x\] …………………….(5)
We also know the formula,
\[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\] …………………(6)
Replacing A by x and B by 3x in the equation (6), we get
\[\cos x+\cos 3x=2\cos \left( \dfrac{x+3x}{2} \right)\cos \left( \dfrac{x-3x}{2} \right)\]
\[\Rightarrow \cos x+\cos 3x=2\cos 2x\cos (-x)\] ……………….(7)
We know the property that, \[\cos (-x)=\cos x\] .
Using this property in equation (7), we get
\[\Rightarrow \cos x+\cos 3x=2\cos 2x\cos (-x)\]
\[\Rightarrow \cos x+\cos 3x=2\cos 2x\cos x\] …………………….(8)
From equation (1), we have
\[\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x\]
\[\Rightarrow \sin x+\sin 3x-3\sin 2x=\cos x+\cos 2x-3\cos 2x\] …………………(9)
Now, from equation (5), equation (8), and equation (9), we get
\[\Rightarrow \sin x+\sin 3x-3\sin 2x=\cos x+\cos 3x-3\cos 2x\]
\[\Rightarrow 2\sin 2x\cos x-3\sin 2x=2\cos 2x\cos x-3\cos 2x\]
Taking \[\sin 2x\] in the above equation, we get
\[\Rightarrow \sin 2x\left( 2\cos x-3 \right)=\cos 2x\left( 2\cos x-3 \right)\]
\[\begin{align}
& \Rightarrow \sin 2x\left( 2\cos x-3 \right)-\cos 2x\left( 2\cos x-3 \right)=0 \\
& \Rightarrow \left( 2\cos x-3 \right)\left( \sin 2x-\cos 2x \right)=0 \\
\end{align}\]
\[\left( 2\cos x-3 \right)=0\] or \[\left( \sin 2x-\cos 2x \right)=0\] .
First, let us solve for \[\left( 2\cos x-3 \right)=0\]
\[\left( 2\cos x-3 \right)=0\]
\[\begin{align}
& \Rightarrow 2\cos x=3 \\
& \Rightarrow \cos x=\dfrac{3}{2} \\
\end{align}\]
We know that the maximum value of the cosine function is 1 and here, we have \[\cos x=\dfrac{3}{2}\] , which is not possible for any value of x.
Now, we have to solve \[\left( \sin 2x-\cos 2x \right)=0\] .
\[\left( \sin 2x-\cos 2x \right)=0\]
\[\Rightarrow \sin 2x=\cos 2x\]
\[\Rightarrow \dfrac{\sin 2x}{\cos 2x}=1\] …………….(10)
We know that, \[\dfrac{\sin A}{\cos A}=\tan A\] .
Replacing A by 2x in \[\dfrac{\sin A}{\cos A}=\tan A\] , we get
\[\dfrac{\sin 2x}{\cos 2x}=\tan 2x\] ………(11)
From equation (10) and equation (11), we get
\[\Rightarrow \dfrac{\sin 2x}{\cos 2x}=1\]
\[\Rightarrow \tan 2x=1\] …………..(12)
Using \[\tan \dfrac{\pi }{4}=1\] in equation (12), we get
\[\begin{align}
& \Rightarrow \tan 2x=\tan \dfrac{\pi }{4} \\
& \Rightarrow 2x=\dfrac{\pi }{4} \\
\end{align}\]
Using \[\tan \dfrac{5\pi }{4}=1\] in equation (12), we get
\[\begin{align}
& \Rightarrow \tan 2x=\tan \dfrac{5\pi }{4} \\
& \Rightarrow 2x=\dfrac{5\pi }{4} \\
\end{align}\]
We have \[2x=\dfrac{\pi }{4}\] , \[2x=\dfrac{5\pi }{4}=\pi +\dfrac{\pi }{4}\] ……………….
Now, in general we can say that,
\[\begin{align}
& 2x=n\pi +\dfrac{\pi }{4} \\
& \Rightarrow x=\dfrac{n\pi }{2}+\dfrac{\pi }{8} \\
\end{align}\]
So, the correct option is option (B).
Note: In this question, one might think to find the general solution of \[\cos x=\dfrac{3}{2}\] . But we don’t have any solution for \[\cos x=\dfrac{3}{2}\] because the maximum value of cosine function is 1. Also, one can think to use formula \[\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x\] and \[\sin 2x=2\sin x\cos x\] in the equation
\[\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x\] . If we do so, then our equation will become complex to solve.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
