
The general form of A.P. is $a$, $a + d$, ________
(a) $a + 2d$
(b) $a - 2d$
(c) $a + d$
(d) $a - d$
Answer
579k+ views
Hint: In this type of question we will take the nth term of a A.P. (arithmetic progression)
that is, $T\left( n \right) = a + \left( {n - 1} \right)d$, where T is the nth term of the A.P. having first term a and d be difference between any two consecutive terms.
Complete step-by-step answer:
Here the given arithmetic progression is $a$, $a + d$, __
Now we will consider the nth term of A.P.
$T\left( n \right) = a + \left( {n - 1} \right)d$ -(1)
where T is the nth term of the A.P. having first term a and d be difference between any two
consecutive terms.
In this question we are given the first two terms of the A.P. that are $a$ and $a + d$.
And from these two consecutive terms we can see that their difference is
$
= a + d - a \\
= d \\
$
And the first term is $a$
According to the question we need to find the third term so $n = 3$.
Now putting all these values in (1), we get,
$
T\left( n \right) = a + \left( {n - 1} \right)d \\
T\left( 3 \right) = a + \left( {3 - 1} \right)d \\
{\text{ = a + 2d}} \\
$
Hence, the third term of the is ${\text{a + 2d}}$.
Therefore, option (a) is the correct answer.
Note: The arithmetic progression is a sequence of numbers which differ from each other by common difference. And the general A.P. is $a$, $a + d$, $a + 2d$ ,____, so on.
The formula for nth term is $T\left( n \right) = a + \left( {n - 1} \right)d$ and sum of n terms is $S\left( n \right) = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$.
that is, $T\left( n \right) = a + \left( {n - 1} \right)d$, where T is the nth term of the A.P. having first term a and d be difference between any two consecutive terms.
Complete step-by-step answer:
Here the given arithmetic progression is $a$, $a + d$, __
Now we will consider the nth term of A.P.
$T\left( n \right) = a + \left( {n - 1} \right)d$ -(1)
where T is the nth term of the A.P. having first term a and d be difference between any two
consecutive terms.
In this question we are given the first two terms of the A.P. that are $a$ and $a + d$.
And from these two consecutive terms we can see that their difference is
$
= a + d - a \\
= d \\
$
And the first term is $a$
According to the question we need to find the third term so $n = 3$.
Now putting all these values in (1), we get,
$
T\left( n \right) = a + \left( {n - 1} \right)d \\
T\left( 3 \right) = a + \left( {3 - 1} \right)d \\
{\text{ = a + 2d}} \\
$
Hence, the third term of the is ${\text{a + 2d}}$.
Therefore, option (a) is the correct answer.
Note: The arithmetic progression is a sequence of numbers which differ from each other by common difference. And the general A.P. is $a$, $a + d$, $a + 2d$ ,____, so on.
The formula for nth term is $T\left( n \right) = a + \left( {n - 1} \right)d$ and sum of n terms is $S\left( n \right) = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

