
The function $f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}$
A. is a constant function
B. has a domain$\left( 0,1 \right)\bigcup \left( e,\infty \right)$
C. is such that $\underset{x\to 1}{\mathop{\lim }}\,f\left( x \right)$
D. is aperiodic
Answer
606.6k+ views
Hint: First try to simplify the given function $f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}$.Then proceeds to the options provided to verify one by one. Here, aperiodic means irregularity.
Complete step-by-step answer:
Here, we have a function given as$f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}\ldots \ldots (1)$.
We need to find correct answer/answers by observing all the options given.
Now, Option A. is given as ${{x}^{\dfrac{1}{\ln x}}}$is a constant function.
We can verify this option by just simplifying the function $f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}$given in the problem.
We have $f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}$
Taking log to both sides, we get
\[{{\log }_{e}}\left( f\left( x \right) \right)={{\log }_{e}}{{\left( x \right)}^{\dfrac{1}{\ln x}}}\ldots \ldots (2)\]
We know property of log as
$\log {{m}^{n}}=n\log m$
So, we can write equation (2) as
\[{{\log }_{e}}\left( f\left( x \right) \right)=\dfrac{1}{\ln x}{{\log }_{e}}\left( x \right)\]
Here ${{\log }_{e}}x$ has base ‘e’ and we know that $\ln x={{\log }_{e}}x$(same value with different representations).
${{\log }_{e}}\left( f\left( x \right) \right)=1$
Now, we know that if
${{\log }_{a}}N=x$, then
\[N={{a}^{x}}\]
Hence,${{\log }_{e}}\left( f\left( x \right) \right)=1$, can be written as
$\begin{align}
& f\left( x \right)=e'=e \\
& f\left( x \right)=e \\
\end{align}$
Hence, given function f(x) is ‘e’ i.e. Constant function.
So, Option A is correct.
Now, Coming to option B. i.e. f(x) has a domain$\left( 0,1 \right)\bigcup \left( e,\infty \right)$.
To verify option ‘B’, we need to calculate the domain of$f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}$.
The given function is in volument of ‘$\ln x$’. So, we cannot put negative values to a given function f(x) because the domain of $\ln x$ is ${{R}^{+}}$or$\left( 0,\infty \right)$.
We know the value of ln1 is 0. So, $\dfrac{1}{\ln x}$cannot take x=1 as well because $\dfrac{1}{0}$is not defined.
Hence, domain of ${{\left( x \right)}^{\dfrac{1}{\ln x}}}$ is$\left( 0,1 \right)\bigcup \left( e,\infty \right)$.
So, option B. is not the correct answer.
Now, to verify option ‘C’ i.e. function $f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}$ is such that $\underset{x\to 1}{\mathop{\lim }}\,f\left( x \right)$ exist,
We need to calculate LHL and RHL for x=1 i.e. $x\to {{1}^{-}}$and$x\to {{1}^{+}}$.
Now, we have already calculated that $f\left( x \right)=e$ for the domain$\left( 0,1 \right)\bigcup \left( e,\infty \right)$.
So, $\ln x$ LHL ($x\to {{1}^{-}}$) and RHL ($x\to {{1}^{+}}$).
We have constant function ‘e’. So the limit at $x\to 1$will exist.
So, option C. is the correct answer.
As ${{\left( x \right)}^{\dfrac{1}{\ln x}}}$ is simplified to ‘e’.
Hence graph of given function i.e.
$f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}$Is given as
Hence, a given function is aperiodic as well where aperiodic means irregularity or not periodic function.
Hence option D. is also correct.
Note: One can go wrong if he/she will not simplify the given relation. As one can think that a given function is written in terms of ‘x’ so how it could be a constant function. So, be careful with these kinds of problems.
One can go wrong with the domain of${{\left( x \right)}^{\dfrac{1}{\ln x}}}$. As domain of ${{x}^{a}}$is ‘R’ i.e. All real numbers. So, one can get confused with it. So, checking domain for $\dfrac{1}{\ln x}$is the key point for calculation of domain of$f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}$.
Complete step-by-step answer:
Here, we have a function given as$f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}\ldots \ldots (1)$.
We need to find correct answer/answers by observing all the options given.
Now, Option A. is given as ${{x}^{\dfrac{1}{\ln x}}}$is a constant function.
We can verify this option by just simplifying the function $f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}$given in the problem.
We have $f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}$
Taking log to both sides, we get
\[{{\log }_{e}}\left( f\left( x \right) \right)={{\log }_{e}}{{\left( x \right)}^{\dfrac{1}{\ln x}}}\ldots \ldots (2)\]
We know property of log as
$\log {{m}^{n}}=n\log m$
So, we can write equation (2) as
\[{{\log }_{e}}\left( f\left( x \right) \right)=\dfrac{1}{\ln x}{{\log }_{e}}\left( x \right)\]
Here ${{\log }_{e}}x$ has base ‘e’ and we know that $\ln x={{\log }_{e}}x$(same value with different representations).
${{\log }_{e}}\left( f\left( x \right) \right)=1$
Now, we know that if
${{\log }_{a}}N=x$, then
\[N={{a}^{x}}\]
Hence,${{\log }_{e}}\left( f\left( x \right) \right)=1$, can be written as
$\begin{align}
& f\left( x \right)=e'=e \\
& f\left( x \right)=e \\
\end{align}$
Hence, given function f(x) is ‘e’ i.e. Constant function.
So, Option A is correct.
Now, Coming to option B. i.e. f(x) has a domain$\left( 0,1 \right)\bigcup \left( e,\infty \right)$.
To verify option ‘B’, we need to calculate the domain of$f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}$.
The given function is in volument of ‘$\ln x$’. So, we cannot put negative values to a given function f(x) because the domain of $\ln x$ is ${{R}^{+}}$or$\left( 0,\infty \right)$.
We know the value of ln1 is 0. So, $\dfrac{1}{\ln x}$cannot take x=1 as well because $\dfrac{1}{0}$is not defined.
Hence, domain of ${{\left( x \right)}^{\dfrac{1}{\ln x}}}$ is$\left( 0,1 \right)\bigcup \left( e,\infty \right)$.
So, option B. is not the correct answer.
Now, to verify option ‘C’ i.e. function $f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}$ is such that $\underset{x\to 1}{\mathop{\lim }}\,f\left( x \right)$ exist,
We need to calculate LHL and RHL for x=1 i.e. $x\to {{1}^{-}}$and$x\to {{1}^{+}}$.
Now, we have already calculated that $f\left( x \right)=e$ for the domain$\left( 0,1 \right)\bigcup \left( e,\infty \right)$.
So, $\ln x$ LHL ($x\to {{1}^{-}}$) and RHL ($x\to {{1}^{+}}$).
We have constant function ‘e’. So the limit at $x\to 1$will exist.
So, option C. is the correct answer.
As ${{\left( x \right)}^{\dfrac{1}{\ln x}}}$ is simplified to ‘e’.
Hence graph of given function i.e.
$f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}$Is given as
Hence, a given function is aperiodic as well where aperiodic means irregularity or not periodic function.
Hence option D. is also correct.
Note: One can go wrong if he/she will not simplify the given relation. As one can think that a given function is written in terms of ‘x’ so how it could be a constant function. So, be careful with these kinds of problems.
One can go wrong with the domain of${{\left( x \right)}^{\dfrac{1}{\ln x}}}$. As domain of ${{x}^{a}}$is ‘R’ i.e. All real numbers. So, one can get confused with it. So, checking domain for $\dfrac{1}{\ln x}$is the key point for calculation of domain of$f\left( x \right)={{x}^{\dfrac{1}{\ln x}}}$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

