
The following questions consist of two statements, one labelled as ‘Assertion (A)’ and the other labelled as ‘Reason (R)’. You are to examine these two statements carefully and decide if the Assertion (A) and Reason (R) are individually true and if so, whether the Reason (R) is the correct explanation for the given Assertion (A). Select your answer to these items using the codes given below and then select the correct option.
Codes:
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is not the correct explanation of A
(c) A is true but R is false
(d) A is false but R is true
Assertion (A): \[\dfrac{d}{dx}\left( {{x}^{{{x}^{x}}}} \right)={{x}^{{{x}^{x}}}}.x\left( 1+2\ln x \right)\]
Reason (R): \[\because {{\left( {{x}^{x}} \right)}^{x}}={{x}^{{{x}^{2}}}}={{e}^{{{x}^{2}}\ln x}}\]
Answer
573.9k+ views
Hint: The given problem is related to derivative of a function and expressing a function in exponential form. Use the formula \[\dfrac{d}{dx}\left( {{x}^{x}} \right)={{x}^{x}}\left( 1+\ln (x) \right)\] to evaluate the derivative given in the assertion.
Complete step by step answer:
Given assertion is: \[\dfrac{d}{dx}\left( {{x}^{{{x}^{x}}}} \right)={{x}^{{{x}^{x}}}}.x\left( 1+2\ln x \right)\]
Now, let \[y={{x}^{{{x}^{x}}}}\] .
Using natural log on both sides, we get \[\ln y=\ln \left( {{x}^{{{x}^{x}}}} \right)\]
\[\Rightarrow \ln y={{x}^{x}}\ln x\]
Now, let’s differentiate both sides with respect to \[x\] .
On differentiating both sides with respect to \[x\] , we get
\[\dfrac{d}{dx}\left( \ln y \right)=\dfrac{d}{dx}\left( {{x}^{x}}\ln \left( x \right) \right)\]
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{x}^{x}}\ln (x) \right)\] --- equation\[(1)\]
Now, we can see \[{{x}^{x}}\ln (x)\] is of the form \[f(x).g(x)\] where \[f(x)={{x}^{x}}\] and \[g(x)=\ln (x)\] .
\[\Rightarrow \dfrac{d}{dx}\left( f(x).g(x) \right)=f(x).{{g}^{'}}(x)+g(x).{{f}^{'}}(x)\]
Now, we need to find \[{{f}^{'}}(x)\] and \[{{g}^{'}}(x)\] .
\[{{f}^{'}}(x)=\dfrac{d}{dx}.f(x)=\dfrac{d}{dx}\left( {{x}^{x}} \right)={{x}^{x}}\left( 1+\ln x \right)\]
\[{{g}^{'}}(x)=\dfrac{d}{dx}.g(x)=\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}\]
\[\Rightarrow \dfrac{d}{dx}\left( {{x}^{x}}.\ln (x) \right)={{x}^{x}}\left( \ln x+1 \right).\ln x\]
On substituting the value of \[\dfrac{d}{dx}\left( {{x}^{x}}.\ln (x) \right)\] in equation \[(1)\] , we get
\[\dfrac{1}{y}\dfrac{dy}{dx}={{x}^{x}}.\dfrac{1}{x}+{{x}^{x}}\left( \ln x+1 \right).\ln x\]
\[\Rightarrow \dfrac{dy}{dx}=y\left[ {{x}^{x}}.\dfrac{1}{x}+{{x}^{x}}\left( \ln x+1 \right).\ln x \right]\]
Now, we know \[y={{x}^{{{x}^{x}}}}\] .
\[\Rightarrow \dfrac{dy}{dx}={{x}^{{{x}^{x}}}}\left[ {{x}^{x}}.\dfrac{1}{x}+{{x}^{x}}\left( \ln x+1 \right).\ln x \right]\]
\[\Rightarrow \dfrac{dy}{dx}={{x}^{{{x}^{x}}}}\left[ {{x}^{x-1}}+{{x}^{x}}\left( \ln x+1 \right).\ln x \right]\]
Clearly, the assertion is wrong.
Now, taking the reason, \[{{\left( {{x}^{x}} \right)}^{x}}={{x}^{{{x}^{2}}}}={{e}^{{{x}^{2}}\ln x}}\] .
From the rule of exponents, \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}\] , we get \[{{\left( {{x}^{x}} \right)}^{x}}={{a}^{x\times x}}={{x}^{{{x}^{2}}}}\] .
Also, we know \[{{a}^{m}}={{e}^{m\ln a}}\] .
\[\Rightarrow {{x}^{{{x}^{2}}}}={{e}^{{{x}^{2}}\ln x}}\]
Hence, the reason is true.
So, the correct answer is “Option D”.
Note: The formula \[\dfrac{d}{dx}\left( {{x}^{x}} \right)={{x}^{x}}\left( 1+\ln (x) \right)\] is uncommon and hence many students forget it. But it should be remembered as it helps in solving such questions.
Complete step by step answer:
Given assertion is: \[\dfrac{d}{dx}\left( {{x}^{{{x}^{x}}}} \right)={{x}^{{{x}^{x}}}}.x\left( 1+2\ln x \right)\]
Now, let \[y={{x}^{{{x}^{x}}}}\] .
Using natural log on both sides, we get \[\ln y=\ln \left( {{x}^{{{x}^{x}}}} \right)\]
\[\Rightarrow \ln y={{x}^{x}}\ln x\]
Now, let’s differentiate both sides with respect to \[x\] .
On differentiating both sides with respect to \[x\] , we get
\[\dfrac{d}{dx}\left( \ln y \right)=\dfrac{d}{dx}\left( {{x}^{x}}\ln \left( x \right) \right)\]
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{x}^{x}}\ln (x) \right)\] --- equation\[(1)\]
Now, we can see \[{{x}^{x}}\ln (x)\] is of the form \[f(x).g(x)\] where \[f(x)={{x}^{x}}\] and \[g(x)=\ln (x)\] .
\[\Rightarrow \dfrac{d}{dx}\left( f(x).g(x) \right)=f(x).{{g}^{'}}(x)+g(x).{{f}^{'}}(x)\]
Now, we need to find \[{{f}^{'}}(x)\] and \[{{g}^{'}}(x)\] .
\[{{f}^{'}}(x)=\dfrac{d}{dx}.f(x)=\dfrac{d}{dx}\left( {{x}^{x}} \right)={{x}^{x}}\left( 1+\ln x \right)\]
\[{{g}^{'}}(x)=\dfrac{d}{dx}.g(x)=\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}\]
\[\Rightarrow \dfrac{d}{dx}\left( {{x}^{x}}.\ln (x) \right)={{x}^{x}}\left( \ln x+1 \right).\ln x\]
On substituting the value of \[\dfrac{d}{dx}\left( {{x}^{x}}.\ln (x) \right)\] in equation \[(1)\] , we get
\[\dfrac{1}{y}\dfrac{dy}{dx}={{x}^{x}}.\dfrac{1}{x}+{{x}^{x}}\left( \ln x+1 \right).\ln x\]
\[\Rightarrow \dfrac{dy}{dx}=y\left[ {{x}^{x}}.\dfrac{1}{x}+{{x}^{x}}\left( \ln x+1 \right).\ln x \right]\]
Now, we know \[y={{x}^{{{x}^{x}}}}\] .
\[\Rightarrow \dfrac{dy}{dx}={{x}^{{{x}^{x}}}}\left[ {{x}^{x}}.\dfrac{1}{x}+{{x}^{x}}\left( \ln x+1 \right).\ln x \right]\]
\[\Rightarrow \dfrac{dy}{dx}={{x}^{{{x}^{x}}}}\left[ {{x}^{x-1}}+{{x}^{x}}\left( \ln x+1 \right).\ln x \right]\]
Clearly, the assertion is wrong.
Now, taking the reason, \[{{\left( {{x}^{x}} \right)}^{x}}={{x}^{{{x}^{2}}}}={{e}^{{{x}^{2}}\ln x}}\] .
From the rule of exponents, \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}\] , we get \[{{\left( {{x}^{x}} \right)}^{x}}={{a}^{x\times x}}={{x}^{{{x}^{2}}}}\] .
Also, we know \[{{a}^{m}}={{e}^{m\ln a}}\] .
\[\Rightarrow {{x}^{{{x}^{2}}}}={{e}^{{{x}^{2}}\ln x}}\]
Hence, the reason is true.
So, the correct answer is “Option D”.
Note: The formula \[\dfrac{d}{dx}\left( {{x}^{x}} \right)={{x}^{x}}\left( 1+\ln (x) \right)\] is uncommon and hence many students forget it. But it should be remembered as it helps in solving such questions.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

