Answer
Verified
410.1k+ views
Hint: First we have to find the sum of scores \[\left( {\text{x}} \right)\] and the frequency \[\left( {\text{f}} \right)\]as this a discrete frequency distribution. Then by using the formula, whichever is around the answer i.e., round off is the required answer.
Formula used: When the number of observation is odd:
Median = ${\left( {\dfrac{{{\text{N + 1}}}}{2}} \right)^{th}}$ term
When the number of observation is even:
First, find ${\left( {\dfrac{{\text{N}}}{2}} \right)^{th}}$ term
Then ${\left( {\dfrac{{{\text{N + 1}}}}{2}} \right)^{th}}$ term
And find the average of two values i.e., average of ${\left( {\dfrac{{\text{N}}}{2}} \right)^{th}}$term and ${\left( {\dfrac{{{\text{N + 1}}}}{2}} \right)^{th}}$ term
Complete step-by-step solution:
First we have to rearrange the given data as follows:
Since the number of observation is even, we need to find average of ${\left( {\dfrac{{\text{N}}}{2}} \right)^{th}}$ term and ${\left( {\dfrac{{{\text{N + 1}}}}{2}} \right)^{th}}$ term
On putting the value of N and we get,
${\left( {\dfrac{{\text{N}}}{2}} \right)^{th}} = \dfrac{{20}}{2}$
Let us divide the term and we get
$ \Rightarrow {10^{th}}$ observation
Now we have to find:
${\left( {\dfrac{{{\text{N + 1}}}}{2}} \right)^{th}} = \dfrac{{20 + 1}}{2}$
On dividing the term and we get,
$ \Rightarrow 10.5$
Taking as round value and we get,
$ \Rightarrow {11^{th}}$ Observation
Now the changed data as formed as follows:
So here, ${10^{th}}$ term lies in $20$ and ${11^{th}}$ term lies in $25$
So we can write it as, by using the formula and find the median
Median = $\dfrac{{20 + 25}}{2}$
Let us add the numerator and we get,
Median = $\dfrac{{45}}{2}$
Let us divide the term and we get,
Median =$22.5$
Therefore the correct answer is ${\text{B) 22}}{\text{.5}}$.
Note: In this question we have an alternative method.
Alternative method:
We can also find median in a simple way.
Here we can also write this elaborately since it is discrete distribution,$10,10,15,15,15,20,20,20,20,20,25,25,25,25,25,25,30,30,30,30$
Median is the middle value of the given observation, so in this observation there are two numbers in middle (since the total numbers are even)
They are $20$ and $25$
Median = average of these two numbers
Median = $\dfrac{{20 + 25}}{2}$
Let us add the numerator and we get,
Median = $\dfrac{{45}}{2}$
Let us divide the term and we get,
Median =$22.5$
Therefore the correct answer is ${\text{B) 22}}{\text{.5}}$.
Formula used: When the number of observation is odd:
Median = ${\left( {\dfrac{{{\text{N + 1}}}}{2}} \right)^{th}}$ term
When the number of observation is even:
First, find ${\left( {\dfrac{{\text{N}}}{2}} \right)^{th}}$ term
Then ${\left( {\dfrac{{{\text{N + 1}}}}{2}} \right)^{th}}$ term
And find the average of two values i.e., average of ${\left( {\dfrac{{\text{N}}}{2}} \right)^{th}}$term and ${\left( {\dfrac{{{\text{N + 1}}}}{2}} \right)^{th}}$ term
Complete step-by-step solution:
First we have to rearrange the given data as follows:
Score \[\left( {\text{x}} \right)\] | Frequency \[\left( {\text{f}} \right)\] |
$10$ | $2$ |
$15$ | $3$ |
$20$ | $5$ |
$25$ | $6$ |
$30$ | $4$ |
${\text{N = 20}}$ |
Since the number of observation is even, we need to find average of ${\left( {\dfrac{{\text{N}}}{2}} \right)^{th}}$ term and ${\left( {\dfrac{{{\text{N + 1}}}}{2}} \right)^{th}}$ term
On putting the value of N and we get,
${\left( {\dfrac{{\text{N}}}{2}} \right)^{th}} = \dfrac{{20}}{2}$
Let us divide the term and we get
$ \Rightarrow {10^{th}}$ observation
Now we have to find:
${\left( {\dfrac{{{\text{N + 1}}}}{2}} \right)^{th}} = \dfrac{{20 + 1}}{2}$
On dividing the term and we get,
$ \Rightarrow 10.5$
Taking as round value and we get,
$ \Rightarrow {11^{th}}$ Observation
Now the changed data as formed as follows:
Score \[\left( {\text{x}} \right)\] | Frequency \[\left( {\text{f}} \right)\] | \[\left( {{\text{cf}}} \right)\] |
$10$ | $2$ | $2$ |
$15$ | $3$ | $5$ |
$20$ | $5$ | $10$ |
$25$ | $6$ | $16$ |
$30$ | $4$ | $20$ |
${\text{N = 20}}$ |
So here, ${10^{th}}$ term lies in $20$ and ${11^{th}}$ term lies in $25$
So we can write it as, by using the formula and find the median
Median = $\dfrac{{20 + 25}}{2}$
Let us add the numerator and we get,
Median = $\dfrac{{45}}{2}$
Let us divide the term and we get,
Median =$22.5$
Therefore the correct answer is ${\text{B) 22}}{\text{.5}}$.
Note: In this question we have an alternative method.
Alternative method:
We can also find median in a simple way.
Score \[\left( {\text{x}} \right)\] | Frequency \[\left( {\text{f}} \right)\] |
$10$ | $2$ |
$15$ | $3$ |
$20$ | $5$ |
$25$ | $6$ |
$30$ | $4$ |
Here we can also write this elaborately since it is discrete distribution,$10,10,15,15,15,20,20,20,20,20,25,25,25,25,25,25,30,30,30,30$
Median is the middle value of the given observation, so in this observation there are two numbers in middle (since the total numbers are even)
They are $20$ and $25$
Median = average of these two numbers
Median = $\dfrac{{20 + 25}}{2}$
Let us add the numerator and we get,
Median = $\dfrac{{45}}{2}$
Let us divide the term and we get,
Median =$22.5$
Therefore the correct answer is ${\text{B) 22}}{\text{.5}}$.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Bimbisara was the founder of dynasty A Nanda B Haryanka class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell