Answer
Verified
455.4k+ views
Hint: To solve the question, we have to remember that, in terms of eccentricity, the focus is at the distance of ae from the centre or we can say that the foci will be (ae, 0). And if foci of ellipse and hyperbola coincide, then foci of hyperbola = foci of ellipse.
We know that, the eccentricity of an ellipse and hyperbola is the ratio from the centre to one of the foci and to one of the vertices and is given by $e = \dfrac{{\sqrt {{a^2} - {b^2}} }}{a}$ for ellipse and $e = \dfrac{{\sqrt {{a^2} + {b^2}} }}{a}$ for hyperbola.
Complete step-by-step answer:
Given that,
Equation of ellipse = $\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$
Equation of hyperbola = $\dfrac{{{x^2}}}{{144}} - \dfrac{{{y^2}}}{{81}} = \dfrac{1}{{25}}$
It can also be written as:
$\dfrac{{25{x^2}}}{{144}} - \dfrac{{25{y^2}}}{{81}} = 1$, or
$\dfrac{{{x^2}}}{{\dfrac{{144}}{{25}}}} - \dfrac{{{y^2}}}{{\dfrac{{81}}{{25}}}} = 1$
Now, we know that the eccentricity of ellipse is given by, $e = \dfrac{{\sqrt {{a^2} - {b^2}} }}{a}$
So,
Comparing the equation of ellipse with general equation of ellipse i.e. $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$
We get a = 4
The eccentricity of ellipse will be,
$ \Rightarrow e = \dfrac{{\sqrt {16 - {b^2}} }}{4}$
$ \Rightarrow e = \sqrt {1 - \dfrac{{{b^2}}}{{16}}} $ ………. (i)
Now, comparing the equation of hyperbola with general equation of hyperbola i.e. $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$
We get, $a' = \dfrac{{12}}{5}$ and $b' = \dfrac{9}{5}$
Then, the eccentricity of hyperbola will be,
$ \Rightarrow e' = \dfrac{{\sqrt {\dfrac{{144}}{{25}} + \dfrac{{81}}{{25}}} }}{{\dfrac{{12}}{5}}}$
$ \Rightarrow e' = \dfrac{3}{{\dfrac{{12}}{5}}}$ ……… (ii)
Now, we know that the hyperbola and ellipse coincide, then their foci will be equal.
i.e. foci of ellipse = foci of hyperbola.
$ \Rightarrow ae = a'e'$
Putting the values from equation (i) and (ii),
$ \Rightarrow 4\sqrt {1 - \dfrac{{{b^2}}}{{16}}} = \dfrac{{12}}{5} \times 3 \times \dfrac{5}{{12}}$
$ \Rightarrow \sqrt {1 - \dfrac{{{b^2}}}{{16}}} = \dfrac{3}{4}$
Squaring both sides, we will get
$ \Rightarrow \left( {1 - \dfrac{{{b^2}}}{{16}}} \right) = \dfrac{9}{{16}}$
Taking L.C.M, we get
\[ \Rightarrow 16 - {b^2} = \dfrac{9}{{16}} \times 16\]
\[ \Rightarrow 16 - {b^2} = 9\]
\[ \Rightarrow {b^2} = 16 - 9\]
\[ \Rightarrow {b^2} = 7\]
So, the correct answer is “Option C”.
Note: The foci of an ellipse always lie on the major axis. The major axis is determined by finding the intercepts on the axes of symmetry. Whereas, the foci of a hyperbola always lie on the transverse axis. It is the positive term whose denominator gives the transverse axis.
We know that, the eccentricity of an ellipse and hyperbola is the ratio from the centre to one of the foci and to one of the vertices and is given by $e = \dfrac{{\sqrt {{a^2} - {b^2}} }}{a}$ for ellipse and $e = \dfrac{{\sqrt {{a^2} + {b^2}} }}{a}$ for hyperbola.
Complete step-by-step answer:
Given that,
Equation of ellipse = $\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$
Equation of hyperbola = $\dfrac{{{x^2}}}{{144}} - \dfrac{{{y^2}}}{{81}} = \dfrac{1}{{25}}$
It can also be written as:
$\dfrac{{25{x^2}}}{{144}} - \dfrac{{25{y^2}}}{{81}} = 1$, or
$\dfrac{{{x^2}}}{{\dfrac{{144}}{{25}}}} - \dfrac{{{y^2}}}{{\dfrac{{81}}{{25}}}} = 1$
Now, we know that the eccentricity of ellipse is given by, $e = \dfrac{{\sqrt {{a^2} - {b^2}} }}{a}$
So,
Comparing the equation of ellipse with general equation of ellipse i.e. $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$
We get a = 4
The eccentricity of ellipse will be,
$ \Rightarrow e = \dfrac{{\sqrt {16 - {b^2}} }}{4}$
$ \Rightarrow e = \sqrt {1 - \dfrac{{{b^2}}}{{16}}} $ ………. (i)
Now, comparing the equation of hyperbola with general equation of hyperbola i.e. $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$
We get, $a' = \dfrac{{12}}{5}$ and $b' = \dfrac{9}{5}$
Then, the eccentricity of hyperbola will be,
$ \Rightarrow e' = \dfrac{{\sqrt {\dfrac{{144}}{{25}} + \dfrac{{81}}{{25}}} }}{{\dfrac{{12}}{5}}}$
$ \Rightarrow e' = \dfrac{3}{{\dfrac{{12}}{5}}}$ ……… (ii)
Now, we know that the hyperbola and ellipse coincide, then their foci will be equal.
i.e. foci of ellipse = foci of hyperbola.
$ \Rightarrow ae = a'e'$
Putting the values from equation (i) and (ii),
$ \Rightarrow 4\sqrt {1 - \dfrac{{{b^2}}}{{16}}} = \dfrac{{12}}{5} \times 3 \times \dfrac{5}{{12}}$
$ \Rightarrow \sqrt {1 - \dfrac{{{b^2}}}{{16}}} = \dfrac{3}{4}$
Squaring both sides, we will get
$ \Rightarrow \left( {1 - \dfrac{{{b^2}}}{{16}}} \right) = \dfrac{9}{{16}}$
Taking L.C.M, we get
\[ \Rightarrow 16 - {b^2} = \dfrac{9}{{16}} \times 16\]
\[ \Rightarrow 16 - {b^2} = 9\]
\[ \Rightarrow {b^2} = 16 - 9\]
\[ \Rightarrow {b^2} = 7\]
So, the correct answer is “Option C”.
Note: The foci of an ellipse always lie on the major axis. The major axis is determined by finding the intercepts on the axes of symmetry. Whereas, the foci of a hyperbola always lie on the transverse axis. It is the positive term whose denominator gives the transverse axis.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE