
The first term of an infinite G.P. is $1$ and any term is equal to the sum of all the succeeding terms. Find the sum of the infinite series.
Answer
607.5k+ views
Hint: Any term in G.P. is equal to the sum of all the succeeding terms. We have:
$ \Rightarrow {T_n} = {T_{n + 1}} + {T_{n + 2}} + {T_{n + 3}} + ......\infty $
The general term of G.P. can be written as:
$ \Rightarrow {T_n} = a{r^{n - 1}} .....(i)$
And according to the information given in the question, any term of the G.P. is equal to the sum of all the succeeding terms. From this we’ll get:
$ \Rightarrow {T_n} = {T_{n + 1}} + {T_{n + 2}} + {T_{n + 3}} + ......\infty $
Substituting corresponding values in equation$(i)$, we’ll get:
$ \Rightarrow a{r^{n - 1}} = a{r^n} + a{r^{n + 1}} + a{r^{n + 2}} + ......\infty ,$
$a$ is the first term of G.P. and its value is $1$ as per the information given in the question. So putting its value, we’ll get:
$
\Rightarrow {r^{n - 1}} = {r^n} + {r^{n + 1}} + {r^{n + 2}} + .....\infty , \\
\Rightarrow {r^{n - 1}} = {r^n}\left[ {1 + r + {r^2} + .....\infty } \right], \\
\Rightarrow \dfrac{1}{r} = \left[ {1 + r + {r^2} + .....\infty } \right] .....(ii) \\
$
Now, the terms on the right hand side of the above equation constitutes an infinite G.P. with $1$ as the first term and $r$ as the common ratio. And we know the formula for sum of terms of infinite G.P.:
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$
So, on using this formula for equation $(ii)$,we’ll get:
$
\Rightarrow \dfrac{1}{r} = \dfrac{1}{{1 - r}}, \\
\Rightarrow 1 - r = r, \\
\Rightarrow 2r = 1, \\
\Rightarrow r = \dfrac{1}{2}. \\
$
Thus, the common ratio of the G.P. is $\dfrac{1}{2}$ and its first term is already given as $1$. So, we our infinite G.P.:
$ \Rightarrow 1,\dfrac{1}{2},\dfrac{1}{4},\dfrac{1}{8},.......\infty $
For finding sum of its terms, we will again apply${S_\infty } = \dfrac{a}{{1 - r}}$, we’ll get:
$
\Rightarrow {S_\infty } = \dfrac{1}{{1 - \dfrac{1}{2}}}, \\
\Rightarrow {S_\infty } = 2 \\
$
Therefore, the sum of infinite G.P. is $2$.
Note: If a G.P. consists of infinite terms, then we can only calculate the sum of its terms if it's common ratio is greater than $0$ and less than $1$$\left( {0 < r < 1} \right)$.Otherwise its sum will not be defined.
$ \Rightarrow {T_n} = {T_{n + 1}} + {T_{n + 2}} + {T_{n + 3}} + ......\infty $
The general term of G.P. can be written as:
$ \Rightarrow {T_n} = a{r^{n - 1}} .....(i)$
And according to the information given in the question, any term of the G.P. is equal to the sum of all the succeeding terms. From this we’ll get:
$ \Rightarrow {T_n} = {T_{n + 1}} + {T_{n + 2}} + {T_{n + 3}} + ......\infty $
Substituting corresponding values in equation$(i)$, we’ll get:
$ \Rightarrow a{r^{n - 1}} = a{r^n} + a{r^{n + 1}} + a{r^{n + 2}} + ......\infty ,$
$a$ is the first term of G.P. and its value is $1$ as per the information given in the question. So putting its value, we’ll get:
$
\Rightarrow {r^{n - 1}} = {r^n} + {r^{n + 1}} + {r^{n + 2}} + .....\infty , \\
\Rightarrow {r^{n - 1}} = {r^n}\left[ {1 + r + {r^2} + .....\infty } \right], \\
\Rightarrow \dfrac{1}{r} = \left[ {1 + r + {r^2} + .....\infty } \right] .....(ii) \\
$
Now, the terms on the right hand side of the above equation constitutes an infinite G.P. with $1$ as the first term and $r$ as the common ratio. And we know the formula for sum of terms of infinite G.P.:
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$
So, on using this formula for equation $(ii)$,we’ll get:
$
\Rightarrow \dfrac{1}{r} = \dfrac{1}{{1 - r}}, \\
\Rightarrow 1 - r = r, \\
\Rightarrow 2r = 1, \\
\Rightarrow r = \dfrac{1}{2}. \\
$
Thus, the common ratio of the G.P. is $\dfrac{1}{2}$ and its first term is already given as $1$. So, we our infinite G.P.:
$ \Rightarrow 1,\dfrac{1}{2},\dfrac{1}{4},\dfrac{1}{8},.......\infty $
For finding sum of its terms, we will again apply${S_\infty } = \dfrac{a}{{1 - r}}$, we’ll get:
$
\Rightarrow {S_\infty } = \dfrac{1}{{1 - \dfrac{1}{2}}}, \\
\Rightarrow {S_\infty } = 2 \\
$
Therefore, the sum of infinite G.P. is $2$.
Note: If a G.P. consists of infinite terms, then we can only calculate the sum of its terms if it's common ratio is greater than $0$ and less than $1$$\left( {0 < r < 1} \right)$.Otherwise its sum will not be defined.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

