
The first term of an infinite G.P is 1 and any term is equal to the sum of all the succeeding terms. Find the series.
Answer
609.6k+ views
Hint: - Use the property, sum of infinite terms G.P as \[\dfrac{{{a_1}}}{{1 - r}}\]
It is given that the first term of an infinite G.P is 1.
\[ \Rightarrow {a_1} = 1\]
Now, we know the sum of infinite G.P \[\left( {{S_\infty }} \right) = \dfrac{{{a_1}}}{{1 - r}}\], (where r is the common ratio)
Let the infinite G.P series is
\[{a_1},{\text{ }}{a_1}r,{\text{ }}{a_1}{r^2}{\text{, }}{a_1}{r^3}{\text{, }}........................\infty \]
Therefore the sum of this series is
\[{S_\infty } = {a_1} + {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty = \dfrac{{{a_1}}}{{1 - r}}................\left( 1 \right)\]
Now according to question it is given that any term is equal to the sum of succeeding terms
\[ \Rightarrow {a_1} = {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty \]
Now add both sides by \[{a_1}\]
\[ \Rightarrow {a_1} + {a_1} = {a_1} + {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty \]
From equation (1)
\[ \Rightarrow {\text{2}}{a_1} = \dfrac{{{a_1}}}{{1 - r}}\]
Now it is given that \[{a_1} = 1\]
\[
\Rightarrow {\text{2}} \times {\text{1}} = \dfrac{1}{{1 - r}} \\
\Rightarrow 1 - r = \dfrac{1}{2} \Rightarrow r = 1 - \dfrac{1}{2} = \dfrac{1}{2} \\
\]
So the required is
\[
{a_1},{\text{ }}{a_1}r,{\text{ }}{a_1}{r^2}{\text{, }}{a_1}{r^3}{\text{, }}........................\infty \\
= 1,{\text{ }}\dfrac{1}{2}{\text{, }}{\left( {\dfrac{1}{2}} \right)^2}{\text{, }}{\left( {\dfrac{1}{2}} \right)^3}{\text{, }}{\left( {\dfrac{1}{2}} \right)^4}{\text{, }}.......................... \\
\]
So, this is the required answer.
Note: - In these types of questions the key concept is that always remember the sum of infinite terms G.P and the general series of infinite G.P, then according to given conditions calculate the value of common ratio, after getting this we can easily calculate the required infinite terms G.P series.
It is given that the first term of an infinite G.P is 1.
\[ \Rightarrow {a_1} = 1\]
Now, we know the sum of infinite G.P \[\left( {{S_\infty }} \right) = \dfrac{{{a_1}}}{{1 - r}}\], (where r is the common ratio)
Let the infinite G.P series is
\[{a_1},{\text{ }}{a_1}r,{\text{ }}{a_1}{r^2}{\text{, }}{a_1}{r^3}{\text{, }}........................\infty \]
Therefore the sum of this series is
\[{S_\infty } = {a_1} + {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty = \dfrac{{{a_1}}}{{1 - r}}................\left( 1 \right)\]
Now according to question it is given that any term is equal to the sum of succeeding terms
\[ \Rightarrow {a_1} = {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty \]
Now add both sides by \[{a_1}\]
\[ \Rightarrow {a_1} + {a_1} = {a_1} + {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty \]
From equation (1)
\[ \Rightarrow {\text{2}}{a_1} = \dfrac{{{a_1}}}{{1 - r}}\]
Now it is given that \[{a_1} = 1\]
\[
\Rightarrow {\text{2}} \times {\text{1}} = \dfrac{1}{{1 - r}} \\
\Rightarrow 1 - r = \dfrac{1}{2} \Rightarrow r = 1 - \dfrac{1}{2} = \dfrac{1}{2} \\
\]
So the required is
\[
{a_1},{\text{ }}{a_1}r,{\text{ }}{a_1}{r^2}{\text{, }}{a_1}{r^3}{\text{, }}........................\infty \\
= 1,{\text{ }}\dfrac{1}{2}{\text{, }}{\left( {\dfrac{1}{2}} \right)^2}{\text{, }}{\left( {\dfrac{1}{2}} \right)^3}{\text{, }}{\left( {\dfrac{1}{2}} \right)^4}{\text{, }}.......................... \\
\]
So, this is the required answer.
Note: - In these types of questions the key concept is that always remember the sum of infinite terms G.P and the general series of infinite G.P, then according to given conditions calculate the value of common ratio, after getting this we can easily calculate the required infinite terms G.P series.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

What is centripetal acceleration Derive the expression class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

