Answer
Verified
424.5k+ views
Hint: Equivalent weight (which is otherwise called gram comparable) is denoted by E and is defined by the mass of one identical that is the mass of a given substance which combines with or displaces a fixed amount of some other substance. The equivalent weight of a component is the mass which consolidates with or dislodges \[1.008{\text{ }}gram\] of hydrogen or \[35.5{\text{ }}grams\] of chlorine or \[8.0{\text{ }}grams\] of oxygen.
Complete step by step answer:
For a redox equivalent reaction, where a similar compound goes through decrease and oxidation all the while, the \[n - factor\] assumes a critical job in deciding the equivalent weight of the compound going through redox response.
The equivalent weight of a compound can be determined by separating the sub-atomic mass by the quantity of positive or negative electrical charges that result from the disintegration of the compound.
The numerical formula of \[Eq.{\text{ }}weight\] is given by:
\[Equivalent{\text{ }}weight{\text{ }} = {\text{ }}E = \dfrac{{{M_w}}}{n}\]
Where, \[{M_w} = \]Molecular weight
\[n = \] \[n - factor\] or valency or the quantity of electrons moved.
Equivalent weight, \[E = {\text{ }}\dfrac{{Formula{\text{ }}weight}}{{n - factor}}.\]
The reaction of Zinc hydroxide with nitric acid produces zinc hydroxide nitrate with the release of water molecules. Now we have the reaction as follows:
\[Zn{(OH)_2} + HN{O_3} \to Zn(OH)(N{O_3}) + {H_2}O.\;\]
Here the \[Zn{\left( {OH} \right)_2}\]discharges solo \[O{H^ - }\]ion in the reaction.
so \[n - \]factor is\[1\].
So, equivalent weight of \[Zn{\left( {OH} \right)_2}\]\[ = \dfrac{{Formula{\text{ }}weight}}{{n - factor}} = \dfrac{{Formula{\text{ }}weight}}{1}\].
Therefore, the correct option is B. \[\dfrac{{formula\;wt}}{1}\].
Note:
The practice of equivalent weights in overall chemistry has mostly been outdated by the practice of molar masses. Equivalent weights might be estimated from molar masses if the chemistry of the matter is well identified.
In \[acid - base\] reactions, the equivalent weight of an acid \[/\] base is the mass of which provisions or responds through a single mole of hydrogen cations (\[{H^ + }\]). For redox reactions, the equivalent weight of individually reactant provisions or reacts with a single mole of electrons (\[{e^ - }\]) in a redox reaction.
Complete step by step answer:
For a redox equivalent reaction, where a similar compound goes through decrease and oxidation all the while, the \[n - factor\] assumes a critical job in deciding the equivalent weight of the compound going through redox response.
The equivalent weight of a compound can be determined by separating the sub-atomic mass by the quantity of positive or negative electrical charges that result from the disintegration of the compound.
The numerical formula of \[Eq.{\text{ }}weight\] is given by:
\[Equivalent{\text{ }}weight{\text{ }} = {\text{ }}E = \dfrac{{{M_w}}}{n}\]
Where, \[{M_w} = \]Molecular weight
\[n = \] \[n - factor\] or valency or the quantity of electrons moved.
Equivalent weight, \[E = {\text{ }}\dfrac{{Formula{\text{ }}weight}}{{n - factor}}.\]
The reaction of Zinc hydroxide with nitric acid produces zinc hydroxide nitrate with the release of water molecules. Now we have the reaction as follows:
\[Zn{(OH)_2} + HN{O_3} \to Zn(OH)(N{O_3}) + {H_2}O.\;\]
Here the \[Zn{\left( {OH} \right)_2}\]discharges solo \[O{H^ - }\]ion in the reaction.
so \[n - \]factor is\[1\].
So, equivalent weight of \[Zn{\left( {OH} \right)_2}\]\[ = \dfrac{{Formula{\text{ }}weight}}{{n - factor}} = \dfrac{{Formula{\text{ }}weight}}{1}\].
Therefore, the correct option is B. \[\dfrac{{formula\;wt}}{1}\].
Note:
The practice of equivalent weights in overall chemistry has mostly been outdated by the practice of molar masses. Equivalent weights might be estimated from molar masses if the chemistry of the matter is well identified.
In \[acid - base\] reactions, the equivalent weight of an acid \[/\] base is the mass of which provisions or responds through a single mole of hydrogen cations (\[{H^ + }\]). For redox reactions, the equivalent weight of individually reactant provisions or reacts with a single mole of electrons (\[{e^ - }\]) in a redox reaction.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE