
The equivalent volume of \[{\text{C}}{{\text{O}}_{\text{2}}}\] in the following reaction is
\[{\text{2NaHC}}{{\text{O}}_{\text{3}}} \to {\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}{\text{ + }}{{\text{H}}_{\text{2}}}{\text{O + C}}{{\text{O}}_{\text{2}}}\]
A) 22.4 liters
B) 11.2 liters
C) 5.6 liters
D) 22 liters
Answer
539.7k+ views
Hint: At STP volume of one mole of any gas is 22.4 L. Equivalent volume is the ratio of standard volume to factor n. Factor n indicates the number of replaceable \[{{\text{H}}^{\text{ + }}}\]ions.
Formula Used: \[{\text{Equivalent volume = }}\dfrac{{{\text{Standard volume}}}}{{{\text{n - factor}}}}\]
Complete answer:
The chemical reaction given to us is
\[{\text{2NaHC}}{{\text{O}}_{\text{3}}} \to {\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}{\text{ + }}{{\text{H}}_{\text{2}}}{\text{O + C}}{{\text{O}}_{\text{2}}}\]
From the balanced chemical reaction, we can say that in this reaction 2 moles of sodium bicarbonate
(\[{\text{NaHC}}{{\text{O}}_{\text{3}}}\]) dissociates into 1 mole of sodium carbonate (\[{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}\]), 1 mole of water (\[{{\text{H}}_{\text{2}}}{\text{O}}\]) and 1 mole of carbon dioxide gas (\[{\text{C}}{{\text{O}}_{\text{2}}}\]).
To calculate the equivalent volume of \[{\text{C}}{{\text{O}}_{\text{2}}}\] gas we need to determine the standard volume of \[{\text{C}}{{\text{O}}_{\text{2}}}\] gas and n-factor.
We know that At the STP volume of one mole of any gas is 22.4L. So the standard volume of \[{\text{C}}{{\text{O}}_{\text{2}}}\] gas is 22.4L.
To determine the n-factor indicates the number of replaceable \[{{\text{H}}^{\text{ + }}}\]ions of acid. In this reaction, we can see that 2 moles of \[{\text{NaHC}}{{\text{O}}_{\text{3}}}\]contain 2 moles of replaceable \[{{\text{H}}^{\text{ + }}}\]ions. Hence the value of the n-factor is 2.
Now, using the standard volume 22.4L and n-factor 2 we can calculate the equivalent volume of \[{\text{C}}{{\text{O}}_{\text{2}}}\] gas as follows:
\[{\text{Equivalent volume = }}\dfrac{{{\text{Standard volume}}}}{{{\text{n - factor}}}}\]
\[{\text{Equivalent volume = }}\dfrac{{{\text{22}}{\text{.4L}}}}{{\text{2}}} = {\text{11}}{\text{.2L}}\]
Thus, the equivalent volume of \[{\text{C}}{{\text{O}}_{\text{2}}}\] gas for the given reaction is 11.2 L.
Hence, the correct answer is option (B) 11.2 liters.
Note: Acid is the species that donate \[{{\text{H}}^{\text{ + }}}\] ions in an aqueous solution. Basicity of the acid indicates a number of replaceable \[{{\text{H}}^{\text{ + }}}\] ions present in acid. While n-factor indicates an actual number of \[{{\text{H}}^{\text{ + }}}\] ions replaced during the reaction. So in the case of diprotic, triprotic acids n-factor might be different from the basicity of acids.
Formula Used: \[{\text{Equivalent volume = }}\dfrac{{{\text{Standard volume}}}}{{{\text{n - factor}}}}\]
Complete answer:
The chemical reaction given to us is
\[{\text{2NaHC}}{{\text{O}}_{\text{3}}} \to {\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}{\text{ + }}{{\text{H}}_{\text{2}}}{\text{O + C}}{{\text{O}}_{\text{2}}}\]
From the balanced chemical reaction, we can say that in this reaction 2 moles of sodium bicarbonate
(\[{\text{NaHC}}{{\text{O}}_{\text{3}}}\]) dissociates into 1 mole of sodium carbonate (\[{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}\]), 1 mole of water (\[{{\text{H}}_{\text{2}}}{\text{O}}\]) and 1 mole of carbon dioxide gas (\[{\text{C}}{{\text{O}}_{\text{2}}}\]).
To calculate the equivalent volume of \[{\text{C}}{{\text{O}}_{\text{2}}}\] gas we need to determine the standard volume of \[{\text{C}}{{\text{O}}_{\text{2}}}\] gas and n-factor.
We know that At the STP volume of one mole of any gas is 22.4L. So the standard volume of \[{\text{C}}{{\text{O}}_{\text{2}}}\] gas is 22.4L.
To determine the n-factor indicates the number of replaceable \[{{\text{H}}^{\text{ + }}}\]ions of acid. In this reaction, we can see that 2 moles of \[{\text{NaHC}}{{\text{O}}_{\text{3}}}\]contain 2 moles of replaceable \[{{\text{H}}^{\text{ + }}}\]ions. Hence the value of the n-factor is 2.
Now, using the standard volume 22.4L and n-factor 2 we can calculate the equivalent volume of \[{\text{C}}{{\text{O}}_{\text{2}}}\] gas as follows:
\[{\text{Equivalent volume = }}\dfrac{{{\text{Standard volume}}}}{{{\text{n - factor}}}}\]
\[{\text{Equivalent volume = }}\dfrac{{{\text{22}}{\text{.4L}}}}{{\text{2}}} = {\text{11}}{\text{.2L}}\]
Thus, the equivalent volume of \[{\text{C}}{{\text{O}}_{\text{2}}}\] gas for the given reaction is 11.2 L.
Hence, the correct answer is option (B) 11.2 liters.
Note: Acid is the species that donate \[{{\text{H}}^{\text{ + }}}\] ions in an aqueous solution. Basicity of the acid indicates a number of replaceable \[{{\text{H}}^{\text{ + }}}\] ions present in acid. While n-factor indicates an actual number of \[{{\text{H}}^{\text{ + }}}\] ions replaced during the reaction. So in the case of diprotic, triprotic acids n-factor might be different from the basicity of acids.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

