
What will be the equilibrium constant at $ {127^o}C $ if equilibrium constant at $ {27^o}C $ is $ 4 $ for the reaction $ {{N}_{2}}+3{{H}_{2}}\rightleftharpoons 2N{{H}_{3}};\,\,\,\Delta H=-46.06kJ $ .
(A) $ 4 \times {10^{ - 2}} $
(B) $ 2 \times {10^{ - 3}} $
(C) $ {10^2} $
(D) $ 4 \times {10^2} $
Answer
504.9k+ views
Hint :When the rate of forward reaction balances the rate of backward reaction and there is no tendency for any further change, then the system is said to be in equilibrium. The value of reaction quotient at equilibrium state is termed as equilibrium constant.
Complete Step By Step Answer:
Van’t Hoff equation: This is an equation which relates equilibrium constant of the system to the enthalpy of reaction at a given temperature. The expression is given as follows:
$ \dfrac{d}{{dT}}\left[ {\ln {K_{eq}}} \right] = \dfrac{{\Delta H}}{{R{T^2}}}\,\,\,\, - (i) $
Where, $ {K_{eq}} $ is the equilibrium constant, $ \Delta H $ is the change in enthalpy of the reaction, $ R $ is the universal gas constant and $ T $ is the temperature at which equilibrium is achieved.
Integrating equation $ (i) $ between temperature $ {T_1} $ and $ {T_2} $ :
$ \int\limits_{{K_1}}^{{K_2}} {d\left[ {\ln {K_{eq}}} \right]} = \dfrac{{\Delta H}}{R}\int\limits_{{T_1}}^{{T_2}} {\dfrac{1}{{{T^2}}}dT} \, $
$ \Rightarrow \ln \left( {\dfrac{{{K_2}}}{{{K_1}}}} \right) = \dfrac{{\Delta H}}{R}\left( {\dfrac{1}{{{T_1}}} - \dfrac{1}{{{T_2}}}} \right)\,\, - (ii) $
Now, data given in the question is as follows:
$ {K_1} = 4 $
$ {T_1} = {27^o}C $
$ \Rightarrow 27 + 273 = 300{\rm{ K}} $
$ {T_2} = {127^o}C $
$ \Rightarrow 127 + 273 = 400{\rm{ K}} $
Change in enthalpy $ \Delta H = - 46.06kJ $
$ \Rightarrow \Delta H = - 46.06 \times {10^3}J $
We need to find the equilibrium constant $ {K_2} $ at temperature $ {T_2} $ . Substituting values in equation $ (ii) $ :
$ \ln \left( {\dfrac{{{K_2}}}{4}} \right) = \dfrac{{ - 46.06 \times {{10}^3}}}{{8.314}}\left( {\dfrac{1}{{300}} - \dfrac{1}{{400}}} \right) $
$ \Rightarrow \ln \left( {\dfrac{{{K_2}}}{4}} \right) = - 5.54 \times {10^3}\left( {\dfrac{{400 - 300}}{{300 \times 400}}} \right) $
$ \Rightarrow \ln \left( {\dfrac{{{K_2}}}{4}} \right) = - 4.62 $
Taking antilog on both sides of the equation:
$ \Rightarrow \dfrac{{{K_2}}}{4} = {e^{ - 4.62}} $
$ \Rightarrow {K_2} = 0.04 $
$ \Rightarrow {K_2} = 4 \times {10^{ - 2}} $
Hence, the equilibrium constant for the given reaction at $ {127^o}C $ is $ 4 \times {10^{ - 2}} $ .
Thus, option (A) is the correct answer.
Note :
Ensure to check the units of the given data before substituting it in the expression. The temperature considered here is absolute temperature i.e., we need to convert the given values of temperature in Kelvin. Also, the value of universal gas constant is always to be decided on the basis of the other given variables, which means enthalpy of the reaction is given in units of joule, so the value of $ R $ must also be expressed in Joule.
Complete Step By Step Answer:
Van’t Hoff equation: This is an equation which relates equilibrium constant of the system to the enthalpy of reaction at a given temperature. The expression is given as follows:
$ \dfrac{d}{{dT}}\left[ {\ln {K_{eq}}} \right] = \dfrac{{\Delta H}}{{R{T^2}}}\,\,\,\, - (i) $
Where, $ {K_{eq}} $ is the equilibrium constant, $ \Delta H $ is the change in enthalpy of the reaction, $ R $ is the universal gas constant and $ T $ is the temperature at which equilibrium is achieved.
Integrating equation $ (i) $ between temperature $ {T_1} $ and $ {T_2} $ :
$ \int\limits_{{K_1}}^{{K_2}} {d\left[ {\ln {K_{eq}}} \right]} = \dfrac{{\Delta H}}{R}\int\limits_{{T_1}}^{{T_2}} {\dfrac{1}{{{T^2}}}dT} \, $
$ \Rightarrow \ln \left( {\dfrac{{{K_2}}}{{{K_1}}}} \right) = \dfrac{{\Delta H}}{R}\left( {\dfrac{1}{{{T_1}}} - \dfrac{1}{{{T_2}}}} \right)\,\, - (ii) $
Now, data given in the question is as follows:
$ {K_1} = 4 $
$ {T_1} = {27^o}C $
$ \Rightarrow 27 + 273 = 300{\rm{ K}} $
$ {T_2} = {127^o}C $
$ \Rightarrow 127 + 273 = 400{\rm{ K}} $
Change in enthalpy $ \Delta H = - 46.06kJ $
$ \Rightarrow \Delta H = - 46.06 \times {10^3}J $
We need to find the equilibrium constant $ {K_2} $ at temperature $ {T_2} $ . Substituting values in equation $ (ii) $ :
$ \ln \left( {\dfrac{{{K_2}}}{4}} \right) = \dfrac{{ - 46.06 \times {{10}^3}}}{{8.314}}\left( {\dfrac{1}{{300}} - \dfrac{1}{{400}}} \right) $
$ \Rightarrow \ln \left( {\dfrac{{{K_2}}}{4}} \right) = - 5.54 \times {10^3}\left( {\dfrac{{400 - 300}}{{300 \times 400}}} \right) $
$ \Rightarrow \ln \left( {\dfrac{{{K_2}}}{4}} \right) = - 4.62 $
Taking antilog on both sides of the equation:
$ \Rightarrow \dfrac{{{K_2}}}{4} = {e^{ - 4.62}} $
$ \Rightarrow {K_2} = 0.04 $
$ \Rightarrow {K_2} = 4 \times {10^{ - 2}} $
Hence, the equilibrium constant for the given reaction at $ {127^o}C $ is $ 4 \times {10^{ - 2}} $ .
Thus, option (A) is the correct answer.
Note :
Ensure to check the units of the given data before substituting it in the expression. The temperature considered here is absolute temperature i.e., we need to convert the given values of temperature in Kelvin. Also, the value of universal gas constant is always to be decided on the basis of the other given variables, which means enthalpy of the reaction is given in units of joule, so the value of $ R $ must also be expressed in Joule.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

